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Abstract: Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum
(Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market.
However, a huge amount of stone fruits waste is produced throughout the food supply chain during
picking, handling, processing, packaging, storage, transportation, retailing and final consumption.
These stone fruits waste contain high phenolic content which are the main contributors to the an-
tioxidant potential and associated health benefits. The antioxidant results showed that plum waste
contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equiv-
alents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g),
while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg
catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g).
However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power
(FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) as-
says, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-
6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste.
Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were con-
ducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight
mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-
ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in
peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that
p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and
quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it
could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant
potential. The results could support the applications of these stone fruit wastes in other food, feed,
nutraceutical and pharmaceutical industries.

Keywords: fruit waste; stone fruits; phenolic compounds; LC-ESI-QTOF-MS/MS; HPLC-PDA

1. Introduction

Food waste is one of the main challenges and a world-wide problem. It may occur
during the whole food supply chain which is directly or indirectly related to producers,
retailers and ultimate consumers [1]. According to the estimation of Edwards and Mer-
cer [2], 44 million tons of food is wasted in Australia each year. It has also been reported
that 25–40% of food is wasted throughout the food supply chain [3]. Fruit injuries, bruising,
over-ripening during food transportation and storage are also some of main issues of food
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waste [1,4]. In addition, rejected foods are also one of the main types of food waste; most
consumers are generally reluctant to choose imperfect foods in terms of shape, color, size,
appearance and freshness [5]. This fruit waste is rich in moisture content and biodegrad-
able ingredients; it can produce unbearable gas and bacteria, which leads to greenhouse
effect and plague [6]. In order to reduce these impacts, extraction of phytochemicals from
different fruit waste streams has been one of the recent focuses [7].

Stone fruits are rich in phytochemicals and are usually consumed directly or processed
into food products including jam, juices and so on [8]. Stone fruits are the members of
Prunus, which includes peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum
(Prunus domestica L.) and apricot (Prunus armeniaca L.) [9]. They consist of a thin outer layer
(epicarp), edible flesh (mesocarp) and a hard stone (endocarp) which encloses the seed
in the center of the fruit [10]. Stone fruits contain various bioactive compounds, which
can be classified as carotenoid, vitamin and phenolic and thiol compounds, and may have
potential antioxidant and anticancer activities [11]. For example, previous studies have
extracted and identified more than 30 phenolic compounds from peaches [12]. Presence of
these diverse bioactives in stone fruits is attractive to consumers and stone fruits have a high
sales volume in the market [8], which indicates that utilization and repurposing of their
waste is one of the smartest ideas to improve the circular economy and food sustainability.

Phenolic compounds can be widely found in plants, and consist of an aromatic ring
with one or more hydroxyl substituents [13,14]. So far, there are more than 8000 kinds of
phenolic compounds which have been identified in plants, including flavonoids, phenolic
acids, tannins etc. [15]. Although the specific metabolic mechanism of phenolic compounds
is unclear, previous studies reported that phenolic compounds have antioxidant, antibacte-
rial and anticancer properties [16–18]. Previously, Zerva, et al. [19] confirmed that peach
waste is rich in carotenoids and phenolic compounds. Gil, et al. [20] argued that peach
waste contains a high concentration of β-carotene, ascorbic acid and phenolic compounds;
furthermore, the antioxidant activity is mainly attributed to phenolic compounds. Pre-
viously, Liu, et al. [8] demonstrated that peach peels have higher levels of antioxidant
activities than peach flesh because of their higher phenolic content. Michalska, et al. [21]
found that the phenolic compounds in the pomace of plum are mainly procyanidin and
catechin. Furthermore, different stone fruits contain different bioactive compounds; for
example, the phenolic profile in plums and peaches varies greatly [22]. In addition, the
composition of phenolics also changes during the maturity of stone fruits [23]. Therefore, it
is necessary to characterize and quantify the phenolic compounds in stone fruits.

The antioxidant activity of phenolic compounds can be measured by scavenging free
radicals using in vitro assays which include the 2,2’-diphenyl-1-picrylhydrazyl (DPPH) assay,
ferric reducing-antioxidant power (FRAP) assay and 2,2′-azino-bis-(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) radical cation decolorization assay [24,25]. The phenolic content
may vary depending on the extraction method, the material, the solvent and the environ-
ment [26]. Methanol, ethanol, acetone, ethyl acetate and aqueous mixtures of these solvents
are commonly used for extraction [27]. Liquid chromatography coupled with electrospray-
ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) can be
applied to determine the phenolic profile in rejected stone fruits with high accuracy. High-
pressure liquid chromatography (HPLC) in combination with a photodiode array detector
(PDA) is used to quantify the particular phenolic compounds in fruits and vegetables [28].
These two techniques can be considered to qualify and quantify the phenolic compounds
in stone fruits waste. Previously, Wu, et al. [29] characterized some major phenolic com-
pounds including kaempferol, gallic acid and (+)-catechin in one of the peach cultivars
(Xiahui-8) using LC-MS in China. Sójka, et al. [30] also identified some phenolic compounds
in dark blue plum including anthocyanins, neochlorogenic acid and chlorogenic acid in
Poland. However, there is limited research published on Australian grown stone fruits and
especially rejected stone fruits waste.

In this research, the potential antioxidant activity of Australian grown stone fruits
waste including peach, nectarine, plum and apricot was examined. The objectives of



Antioxidants 2021, 10, 234 3 of 22

this study were to extract the phenolic compounds from stone fruits waste; measure
the total phenolic content (TPC), total flavonoid content (TFC), and total tannin content
(TTC); analyzes the antioxidant activity by using DPPH, FRAP, ABTS and total antioxidant
capacity (TAC) assays; characterize the phenolic compounds by LC-ESI-QTOF-MS/MS
analysis and quantify from stone fruits waste using HPLC-PDA analysis. The outcome of
our study may provide possibilities for the utilization of stone fruits waste in other food,
feed and pharmaceutical streams.

2. Materials and Methods
2.1. Chemical and Reagents

Most of the chemicals used for phenolics extraction and characterization in this research
were analytical grade and purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). Folin-
Ciocalteu reagent, aluminum chloride hexahydrate, 2,2’-diphenyl-1-picrylhydrazyl (DPPH),
2,4,6-tripyridyl-s-triazine (TPTZ), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), gal-
lic acid, ascorbic acid, quercetin, vanillin, catechin, potassium persulfate and HCl were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Ethanol, sodium carbonate, sulfuric
acid, sodium acetate, acetic acid and ferric chloride (Fe[III]Cl3·6H2O) were purchased
from the Thermo Fisher (Scoresby, Melbourne, VIC, Australia). HPLC grade methanol,
acetonitrile and acetic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Phenolic acid and flavonoid standards, including caffeic acid, chlorogenic acid, gallic
acid, p-hydroxybenzoic acid, protocatechuic acid, catechin, epicatechin, epicatechin gallate,
kaempferol and quercetin were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Sample Preparation

Stone fruit waste samples used in the proposed research project were mostly rejected
by the customers due to their low-grade quality in terms of shape, color, size, appearance,
freshness, injuries and over ripeness but were not rotten. Samples of 2–3 kg of each stone
fruits waste including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum
(Prunus domestica L.) and apricot (Prunus armeniaca L.) were collected from a local retail
market in Melbourne, Australia. After removing the seeds and peels, samples were cleaned
and crushed into small pieces, and prepared for extraction within 1–2 h. Pulps were
blended (1.5-L blender, Russell Hobbs Classic, model DZ-1613, Melbourne, VIC, Australia)
into slurry, stored in silver flat Ziplock aluminum foil—vacuum sealing bags (Best supply,
NSW, AU) and were kept at −20 ◦C for 2–3 weeks for further analysis.

2.3. Extraction of Phenolic Compounds

Extracts were prepared with ethanol (70%, 20mL) by modifying the protocol of Gu,
et al. [31]. In short, extracts were shaken over 12 h in a shaking incubator (ZWYR-240,
Labwit, Ashwood, Victoria, Australia) at 120 rpm, 4 ◦C and then centrifuged (ROTINA
380R centrifuge, Hettich, Victoria, Australia) at 5000 rpm for 15 min. The supernatant was
collected and stored at −20 ◦C for further analysis.

2.4. Estimation of Phenolic Compounds and Antioxidant Assays

TPC, TFC and TTC were determined for phenolic compounds estimation, while DPPH,
FRAP, and ABTS were measured for antioxidant capacity. All the assays were performed
using our previously modified method of Tang, et al. [32] in triplicate. The data were
obtained by the Multiskan® Go microplate reader (Thermo Fisher Scientific, Waltham,
MA, USA).

2.4.1. Determination of Total Phenolic Content (TPC)

The TPC of stone fruits was determined by using the method of Severo, et al. [33]
with modification. An amount of 25 µL Folin-Ciocalteu reagent (1:3 diluted with water)
and 200 µL water was added to 25-µL extracts in triplicate in 96-well plates (Corning Inc.,
Midland, NC, USA) and incubated for 5 min at room temperature. Then, 25 µL of 10%
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(w/w) sodium carbonate was supplied to basify the mixture. After incubating at 25 ◦C for
60 min, the absorbance was determined at 765 nm with a spectrophotometer plate reader
(Thermo Fisher Scientific, Waltham, MA, USA). The TPC was expressed as mg of gallic
acid equivalent (GAE) per gram fresh weight (mg GAE/g fw) of the sample using the
calibration curve of gallic acid standard (0–200 µg/mL).

2.4.2. Determination of Total Flavonoids Content (TFC)

The TFC in stone fruits was determined by the modified aluminum chloride method of
Gouveia and Castilho [34]. An amount of 80 µL of 2% (w/v) aluminum chloride ethanolic
solution and 120 µL of 50 mg/mL sodium acetate solution were applied to 80 µL stone
fruits extract in a 96-well plate, followed by incubation at room temperature in a dark
room for 2.5 h. The absorbance was measured at 440 nm. The TFC was expressed as mg
of quercetin equivalent (QE) per gram fresh weight (mg QE/g fw) of the sample using
the calibration curve of prepared with quercetin with concentrations ranging from 0 to
50 µg/mL.

2.4.3. Determination of Total Tannins Content (TTC)

Based on the method of vanillin and the p-dimethylaminocinnamaldehyde method of
Stavrou, et al. [35], TTC was determined by mixing 150 µL of 4% (w/v) methanolic vanillin
solution with a 25-µL diluted sample. Then, 25 µL of 32% (v/v) sulfuric acid in methanol
was supplied to the mixture in a 96-well plate. The absorbance was measured at 500 nm
after incubating at 25 ◦C for 15 min. The TTC was expressed as mg of catechin equivalent
(CE) per gram fresh weight (mg CE/g fw) of the sample using the calibration curve of
catechin (0–1000 µg/mL).

2.4.4. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Antioxidant Assay

The DPPH free radical scavenging capacity was determined by modifying the method
of Sogi, et al. [36]. A 40-µL extract was added to 260 µL of 0.1-mM DPPH radical methanol
solution in a 96-well plate, followed by shaking vigorously. Then, the mixture was incu-
bated for 30 min at 25 ◦C. The absorbance was determined at 517 nm. The DPPH free
radical scavenging capacity was expressed as mg of ascorbic acid equivalent (AAE) per
gram fresh weight (mg AAE/g fw) of the sample using the calibration curve of ascorbic
acid (0–50 µg/mL).

2.4.5. Ferric Reducing-Antioxidant Power (FRAP) Assay

The FRAP was assayed with a modified method of Sogi, et al. [36]. The FRAP method
evaluates the capacity of a material to reduce iron in the Fe3+–TPTZ complex (ferric-2,4,6-
tripyridyl-s-Triazine) into Fe2+–TPTZ. The FRAP reagent was made from 20 mM FeCl3
solution, 10 mM TPTZ (2,4,6-tripyridyl-s-triazine) solution and 300 mM sodium acetate
solution with a volume ratio of 1:1:10. An amount of 20 µL of sample was added to 280 µL
FRAP reagent in a 96-well plate and incubated at 37 ◦C for 10 min. The absorbance was
determined at 593 nm. The FRAP was expressed as mg of ascorbic acid equivalent (AAE)
per gram fresh weight (mg AAE/g fw) of the sample using the calibration curve prepared
from ascorbic acid with concentrations ranging from 0 to 50 µg/mL.

2.4.6. 2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical
Scavenging Assay

The ABTS radical scavenging capacity is calculated by using ABTS radical cation
decolorization assay using the protocol of Peng, et al. [37]. ABTS cations were generated
by a mixture of 5 mL of 7 mmol/L of ABTS solution with 88 µL of a 140-mM potassium
persulfate solution, which was incubated at 25 ◦C for 16 h in a dark area. The ABTS+

solution was then diluted with ethanol to obtain an initial absorbance of 0.70 at 734 nm.
After that, 10 µL of the stone fruits sample was applied to 290-µL prepared ABTS+ solution
in a 96-well plate and incubated at room temperature for 6 min in the dark. After the
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incubation, the absorbance was measured at 734 nm. The standard curve is also constructed
by using ascorbic acid solution. The ABTS radical scavenging capacity was expressed as
mg of ascorbic acid equivalent (AAE) per gram fresh weight (mg AAE/g fw) of the sample
using the calibration curve prepared from ascorbic acid (0–150 µg/mL).

2.4.7. Total Antioxidant Capacity (TAC)

The TAC was estimated by modifying the phosphomolybdate method of Prieto,
et al. [38]. Phosphomolybdate reagent was prepared by mixing H2SO4 (0.6 M), sodium
phosphate (0.028 M) and ammonium molybdate (0.004 M). A 40-µL extract was applied to
260 µL of phosphomolybdate reagent in the 96-well plate. The absorbance was measured
at 695 nm after incubating at 95 ◦C for 10 min and cooling down to the room temperature.
The TAC was expressed as mg of ascorbic acid equivalent (AAE) per gram fresh weight
(mg AAE/g fw) of the sample using the calibration curve of ascorbic acid (0–200 µg/mL).

2.5. LC-ESI-QTOF-MS/MS Analysis

LC-ESI-QTOF-MS/MS characterization of the phenolic compounds in stone fruits
waste was performed by Agilent 1200 series HPLC (Agilent Technologies, CA, USA)
equipped with an Agilent 6520 Accurate-Mass Q-TOF LC/MS (Agilent Technologies, CA,
USA) by following the protocol of Suleria, et al. [39]. The separation of compounds is
achieved by using Synergi Hydro-RP 80A LC reverse phase column with an internal
diameter of 250 mm × 4.6 mm and particle size of 4 µm (Phenomenex, Torrance, CA, USA).
The Phenomenex C18 ODS guard column with an internal diameter of 4.0× 2.0 mm is used
to protect the column. The mobile phase A consisted of acetic acid/water solution (2:98,
v/v), whereas mobile phase B was composed of acetonitrile/acetic acid/water (100:1:99,
v/v/v). Mobile phases A and B were degassed at 25 ◦C for 15 min. The flow rate was
set to be 0.8 mL/min and the injection volume of each sample was 6 µL. Gradient elution
conditions were set by a mixture of mobile phase A and B as follows: 0–20 min, 10% B;
20–30 min, 25% B; 30–40 min, 35% B; 40–70 min, 40% B; 70–75 min, 55% B; 75–77 min, 80%
B; 77–79 min, 100% B; 79–82 min, 100% B; 82–85 min, 10% B. The column was equilibrated
for 3 min between each two injections.

For MS/MS, electrospray ionization (ESI) was utilized in operating both negative
and positive ion modes. The mass spectrometry conditions were performed as follows:
the nebulizer gas pressure was 45 psi, the nitrogen gas temperature was 300 ◦C with a
5 L/min flow rate, while the sheath gas temperature was 250 ◦C with an 11 L/min flow
rate. The capillary and nozzle voltage were, respectively, set at 3.5 kV and 500 V. The mass
spectra were obtained over the m/z range of 50–1300 amu with collision energy (10, 15
and 30 eV) for fragmentation. Data collection and analysis were performed using Agilent
LC-MS-QTOF MassHunter data acquisition software version B.03.01.

2.6. HPLC-PDA Analysis

HPLC-PDA was carried out by using the method of Ma, et al. [40] to quantify the
targeted phenolic compounds in stone fruits samples, which was performed with Agilent
1200 series HPLC (Agilent Technologies, CA, USA) equipped with a photodiode array
(PDA) detector. Column and LC conditions were maintained as described above in LC-
ESI-QTOF-MS/MS analysis except the sample injection volume is changed to 20 µL. The
PDA detector is used to detect sample compositions under 280 nm, 320 nm, and 370 nm for
the identification of hydroxybenzoic acids, hydroxycinnamic acids and flavonol groups,
respectively. Individual phenolic compounds were quantified according to the calibration
curves generated from standards. Results were expressed as µg/g of the sample. Data
acquisition and analysis were performed using Agilent LC-ESI-QTOF-MS/MS MassHunter
data acquisition software version B.03.01.
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2.7. Statistical Analysis

Results were presented as mean ± standard deviation (SD) of triplicate experiments.
One-way analysis of variance (ANOVA) was used to test whether there are significant differ-
ences between mean values of different samples, followed by Tukey’s honestly significant
differences (HSD) multiple rank test at p < 0.05, which was carried out by using Minitab
Statistical software for Windows Version 19.0 (Minitab, LLC, State College, PA, USA).

3. Results and Discussion
3.1. Phenolic Compounds Estimation (TPC, TFC and TTC)

Stone fruits have been reported to be rich in phenolic compounds [20,21]. In this
research, the phenolic content in four Australian grown stone fruits’ waste including peach,
nectarine, plum and apricot were determined by TPC, TFC and TTC (Table 1). Plum waste
and apricot waste presented a higher phenolic content among all the samples, since plum
waste showed a significant higher TPC and TFC, and apricot waste displayed a higher TTC
than the others (p ≤ 0.05).

Table 1. Phenolic content and antioxidant activities in stone fruit samples.

Antioxidant Assays Peach Nectarine Plum Apricot

TPC (mg GAE/g) 0.47 ± 0.08 c 0.31 ± 0.05 d 0.94 ± 0.07 a 0.65 ± 0.12 b

TFC (mg QE/g) 0.18 ± 0.01 c 0.16 ± 0.09 c 0.34 ± 0.01 a 0.23 ± 0.07 b

TTC (mg CE/g) 0.07 ± 0.02 c 0.10 ± 0.06 b 0.09 ± 0.02 c 0.19 ± 0.03 a

DPPH (mg AAE/g) 0.98 ± 0.07 b 1.42 ± 0.04 a 0.94 ± 0.17 b 1.47 ± 0.12 a

FRAP (mg AAE/g) 0.54 ± 0.01 c 0.98 ± 0.02 a 0.63 ± 0.04 b 0.93 ± 0.04 a

ABTS (mg AAE/g) 0.43 ± 0.09 a 0.23 ± 0.04 b 0.21 ± 0.01 b 0.25 ± 0.11 b

TAC (mg AAE/g) 0.27 ± 0.10 d 0.91 ± 0.09 a 0.61 ± 0.12 b 0.54 ± 0.09 c

All data are the mean ± standard deviation of three replicates. Means followed by different letters (a, b, c, d) within
the same row are significantly different (p ≤ 0.05) from each other by using one-way analysis of variance and
Tukey’s test. Data of stone fruit samples are reported on a fresh weight basis. GAE, gallic acid equivalents; QE,
quercetin equivalents; CE, catechin equivalents; AAE, ascorbic acid equivalents.

In terms of TPC, all the samples were significantly different from each other (p ≤ 0.05).
Plum waste (0.94 ± 0.07 mg GAE/g) contained the highest concentration of phenolic
compounds, followed by apricot, peach and nectarine. The previous results [41] also
showed that the TPC of Serbian grown “Cacanska secer” plum is higher than “J. H. Hale”
peach and “Caldesi” nectarine. This may be due to the difference in phenolic composition
in different fruits. Since the skin of stone fruit is usually not eaten by humans. However,
previous study has described that the peel of Chinese grown peach, which is Hujingmilu
cultivar (79.14 ± 4.81 mg GAE/100g), contains more phenolic compounds than peach flesh
(25.28 ± 0.96 mg GAE/100g) [8]. Furthermore, compared with the previous study with
TPC of Serbian grown plum, our data were slightly lower [41]. It has been reported that
total phenolic content varies within cultivars [8]; the lower phenolic concentration in our
study may suggest that Australian grown stone fruits contain less phenolic compounds as
compared to Serbian grown stone fruits.

In TFC, plum waste (0.34 ± 0.01 mg QE/g) also showed significantly (p ≤ 0.05) higher
concentration among others; however, there was no significant difference between peach
and nectarine. Previously, it has been reported that TFC of north-western Iranian grown
plums ranged from 16.06 to 35.81 mg QE/100 g, which was almost similar to our results [42].
However, compared with fresh Iranian peach, including “Zoodras”, “Kosari”, “Haj-kazemi”,

“Tak-daneh”, “Anjiri-ye-khouni” and “Zaferani”, our TFC results were slightly lower [43]. This
may suggest that stone fruits waste contain less flavonoids as compared to fresh fruits. It
might be due to conversion of parent flavonoids into other metabolites. Fruit maturity is
also one of the important factors, flavonoid content decrease significantly (around 40%)
during ripening [44]. Rejected fruits are mostly over-ripen; therefore, they may have less
flavonoids as compared to fresh stone fruits.
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As for TTC, apricot waste contained the highest tannins (0.19 ± 0.03 mg CE/g). There
was non-significant difference between the tannin content of peach and plum (p ≤ 0.05).
Compared with the previous research on apricot and “Papaz” plum growing in Turkey,
our samples showed higher tannin content. It has been revealed that tannin concentration
varies from varieties, geographical origin and environmental conditions [45]. In addition,
the fruit storage conditions have a significant impact on tannin content. Peaches stored at
lower temperatures (0–2 ◦C) retained more phenolic compounds [46], long storage duration
can also reduce phenolic compounds [46]. Moreover, tannin concentration may also be
affected by growing conditions, agronomical practices and water availability. Under water
scarcity and stress condition, the concentration of phenolic compounds normally increased
because of the plant defense mechanism [47].

3.2. Antioxidant Activities Estimation (DPPH, FRAP, ABTS and TAC)

The antioxidant activities were determined by DPPH, FRAP, ABTS and TAC, which are
the most preferred methods for the determination of antioxidant potential [37]. According
to DPPH assay, nectarine (1.42 ± 0.04 mg AAE/g) and apricot presented similar antioxi-
dant potential which were significantly higher (p ≤ 0.05) than peach and plum samples
(Table 1). Our DPPH results are consistent with previous study conducted on Californian
grown peach, plum and nectarine [20]. However, compared with another study on plum in
North Pakistan, our DPPH value was slightly higher [48]. This variation could be explained
by the different extraction solvent used, cultivars, growing region and climatic conditions.
The previous study used water and acetone to extract phenolic compounds, while we used
ethanol for extraction of phenolic compounds. It may suggest that ethanol could be a better
solvent for phenolics extraction.

The FRAP activity of nectarine (0.98 ± 0.02 mg AAE/g) and apricot was higher as
compared to other stone fruit samples. Compared with the “Gönci magyarkajszi” and “Pre-
venta” apricot (1.76 AAE mg/ml) grown in Central Hungary, our stone fruits’ antioxidant
potential was lower might be due to the difference of varieties and growing region [49].
In another study, FRAP of 27 different apricot cultivars ranged from 0.47 to 10.35 mmol
AAE/L, which was also slightly lower than our result [50]. It has been emphasized that the
variation of reducing capacity could be due to diverse regions, cultivars and harvest year
and type of solvents used for extraction [50]. In addition, it was suggested that the FRAP
activity was associated with types of phenolics and their composition. The extractable
phenolic compounds showed higher FRAP values as compared to non-extractable phenolic
compounds [51].

In ABTS, peach waste (0.43 ± 0.09 mg AAE/g) had the greatest radical scavenging
capacity (p ≤ 0.05) compared to other stone fruit waste. Compared with a previous study,
ABTS of 17 Luxembourgish grown plum cultivars range from 195 to 386 mg AAE/100 g,
our data was slightly higher than Kaulmann, et al. [52] study. The variation is due to
the extracted solvent of methanol, which was different from our 70% ethanolic extrac-
tion. However, another study focused on dry apricot fruit in Jammu showed higher
ABTS [53]. In terms of TAC, nectarine waste (0.91 ± 0.09 mg AAE/g) presented the highest
TAC value, followed by plum and apricot. The previous work about peach and apricot
growing in Algeria showed lower antioxidant capacity as compared to our study [54].
The variation could be related to differences in varieties and growing region and type
of solvent extraction. Another study on stone fruits of northern Greece showed slightly
higher results of 15.13 ± 4.44 µmol AAE/g for plum, 14.16 ± 4.12 µmol AAE/g for peach,
10.40 ± 0.56 µmol AAE/g for nectarine and 4.00 ± 0.80 µmol AAE/g for apricot as com-
pared to our study [55]. The variation could be due to difference in solute to solvent ratio,
grown region and cultivars. Furthermore, Hui, et al. [51] argued that extractable phenolic
compounds contribute more to total antioxidant capacity than non-extractable phenolic
compounds. Combined with our data, nectarine waste may contain more extractable
phenolic compounds than other stone fruits waste.
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3.3. Correlation between Phenolic Compounds and Antioxidant Assays

Correlation analysis was applied to explain the relationship between TPC, TFC, TTC
and antioxidant assays (DPPH, FRAP, ABTS and TAC), performed with Pearson’s correla-
tion test (Table 2). The TPC was strongly positively correlated with TFC (r = 0.982, p≤ 0.01),
whereas DPPH is positively correlated with ABTS (r = 0.960, p ≤ 0.05). Since flavonoids are
benzo-γ-pyrone derivatives composed of polyphenolic and pyrane rings [56], the strong
and positive correlation between TPC and TFC could indicate that phenolic content in stone
fruits waste are composed of a high concentration of flavonoids. The similar relationship
between TPC and TFC was also confirmed in the previous study [41].

Table 2. Pearson’s correlation coefficients (r) for the relationships between antioxidant assays and
phenolic content.

Variables TPC TFC TTC DPPH FRAP ABTS

TFC 0.982 **
TTC 0.124 0.040

DPPH −0.482 −0.485 0.744
ABTS −0.400 −0.353 0.653 0.960 *
FRAP −0.369 −0.477 −0.402 −0.396 −0.604
TAC −0.221 −0.067 0.125 0.550 0.756 −0.799

** Significant correlation with p ≤ 0.01; * Significant correlation with p ≤ 0.05.

In terms of antioxidant assays, DPPH and ABTS were applied to determine the free
radical scavenging capacity. The positive relationship between DPPH and ABTS has also
been confirmed in previous study [41]. However, another antioxidant assay, FRAP, was not
strongly correlated with DPPH and ABTS. Since these three assays measure the scavenging
ability differently, the stability of radicals and the mechanisms can influence the result [8].
For instance, it has been reported that DPPH was applied to detect the hydrogen donator,
while FRAP was based on electron transfer [57]. The difference between the result of FRAP
and DPPH has also been found in the study of Dudonne, et al. [58].

However, the correlation between antioxidant activities and phenolic content was
contradictory. Some authors observed that there were strong correlations between antiox-
idant activities and total phenolic content, whereas some represent low or no relation-
ship [41,56,59]. Since we did not find a high correlation, it could be inferred that phenolic
compounds are not the only bioactive compounds in stone fruits waste which contribute
to antioxidant activity. In addition, although plum had higher TPC and TFC value, the
antioxidant activity of plum was lower. Since all the antioxidant assays are not only aimed
at estimating phenolic compounds but all types of phytochemicals and bioactive com-
pounds, the antioxidant results may be influenced by other phytochemicals, for example,
the carotenoids [60]. However, we could conclude that stone fruits waste contains many
phenolics and has antioxidant potential. Therefore, we conducted LC-ESI-QTOF-MS/MS
and HPLC-PDA to qualify and quantify phenolics present in stone fruits waste.

3.4. Phenolic Identification by LC-ESI-QTOF-MS/MS

LC-ESI-QTOF-MS/MS was applied to analyze the phenolic compounds from the stone
fruits samples in negative and positive ionization modes. All the compounds identified in the
stone fruits samples were based on the mass-to-charge (m/z) values of mass spectrometry in
negative ionization and positive ionization modes (Supplementary data—Figures S1 and S2).
The Agilent LC/MS MassHunter Qualitative Software and Personal Compound Database
and Library (PCDL) with their online databases were applied to analyze the compounds.
Among them, we selected compounds with a PCDL score more than 80 and a mass error
<±5 ppm to conduct further characterization and verification.

As shown in Table 3, identified compounds were listed along with their molecular
formula, retention times, ionization modes, molecular weight, theoretical weight, observed
wight, mass error and MS/MS product ions. LC-ESI-QTOF-MS/MS has tentatively char-
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acterized 59 phenolic compounds in four stone fruits waste including 26 phenolic acids,
28 flavonoids, 1 lignans and 4 other polyphenols.

3.4.1. MS/MS Based Characterization of Phenolic Compounds
Phenolic Cids

In terms of phenolic acids, four sub-classes have been found in stone fruit waste
samples, which includes 16 hydroxycinnamic acids, 6 hydroxybenzoic acids, 3 hydrox-
yphenylpropanoic acids and 1 hydroxyphenylacetic acid.

Hydroxycinnamic acids
Hydroxycinnamic acids, which are commonly found in different fruits, such as peach,

plum, blueberry and mango, have been reported to have antioxidant potential [61]. In this
study, 16 hydroxycinnamic acids were detected, which showed the largest number than
any other sub-classes.

The presence of 3-caffeoylquinic acid (Compound 6 with [M−H]− m/z at 353.0864) was
confirmed by the product ions of m/z 253 [M−H−HCOOH− 3H2O (loss of 100 Da), m/z
190 [M−H− C6H5O2 − 3H2O] (loss of 163 Da) and m/z 144 [M−H− C7H11O6 −H2O]
(loss of 209 Da) from the parent ion [62]. A similar compound, 3-caffeoylquinic acid was
previously found in Chinese peach and nectarine by UPLC-ESI-QTOF-MS analysis and
was reported as natural antioxidant [63,64]. Ferulic acid (Compound 9) was presented in
nectarine, plum and apricot with [M−H]−m/z at 193.0501 in the negative ionization mode.
The identification of ferulic acid was achieved by the MS2 experiment which displayed the
product ions at m/z 178, m/z 149 and m/z 134, indicating the loss of CH3, CO2 and CH3
with CO2 from the precursor, respectively [65]. Regarding to previous research, ferulic acid
has been characterized in fresh Japanese plums by HPLC [66]. Furthermore, ferulic acid
was reported to have the ability of free radical scavenging and inhibit the toxicity of free
radicals [67].

Compounds 7, 11, 13 which were characterized to be 3-feruloylquinic acid, 3-p-
coumaroylquinic acid and caffeic acid, respectively, were reported in different stone fruits
in previous studies [29,66,68]. To our best knowledge, isoferulic acid 3-sulfate, cinnamic
acid, caffeoyl glucose, 1-sinapoyl-2-feruloylgentiobiose and hydroxycaffeic acid (Com-
pounds 2, 3, 4, 14, 15) were identified first time in stone fruits; however, they were already
reported in other plants. For example, isoferulic acid 3-sulfate and hydroxycaffeic acid
have been found in berries in previous studies [69,70], Compound 3 was reported in peach
leaves, sesame and almond [71,72]. Moreover, Chokanan mango was reported to be rich in
caffeoyl glucose (Compound 4) [73] and 1-Sinapoyl-2-feruloylgentiobiose (Compound 14)
has been found in various of cruciferous vegetables [74].

Hydroxybenzoic acids
Hydroxybenzoic acids were widely present in fruits and vegetables and were re-

ported to have antioxidant activity and have the potential to ameliorate cardiovascular
disorders [75].

In present work, six hydroxybenzoic acids were identified and tentatively character-
ized. Compound 20 ([M − H]− m/z at 137.0240) and Compound 21 ([M − H]− m/z at
153.0190) were tentatively characterized as 2-hydroxybenzoic acid and 2,3-dihydroxybenzoic
acid based on the product ions at m/z 93 and at m/z 109, due to the loss of CO2 (44 Da)
from the precursor ions [76,77]. In previous studies, these two phenolic acids have been
reported as important functional compounds in peach [78,79]. Compound 17, Compound
18 and Compound 22 were tentatively characterized to be ellagic acid acetyl-xyloside, gallic
acid 4-O-glucoside and 3-O-methylgallic acid, respectively. To the best of our knowledge,
these compounds were identified for the first time in stone fruits; however, they already
reported in guava, raspberry and seaweed [80–82].
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Table 3. Qualitative characterization of phenolic compounds in stone fruits waste by Liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass
spectrometry (LC-ESI-QTOF-MS/MS).

No. Compound
Name

Moleular
Formula

RT
(min)

Ionization
(ESI−/ESI+)

Molecular
Weight

Theoretical
Weight (m/z)

Observed
Weight (m/z)

Error
(ppm)

MS/MS Product
Ions Samples

Phenolic acids
Hydroxycinnamic acids

1 1,5-Dicaffeoylquinic acid C25H24O12 4.134 [M − H]− 516.1268 515.1195 515.1198 0.6 353, 335, 191, 179 NE
2 Isoferulic acid 3-sulfate C10H10O7S 5.341 [M − H]− 274.0147 273.0074 273.0067 −2.6 193, 178 PL
3 Cinnamic acid C9H8O2 9.317 [M − H]− 148.0524 147.0451 147.0449 −1.4 103 NE, *AP, PL
4 Caffeoyl glucose C15H18O9 14.833 [M − H]− 342.0951 341.0878 341.0887 2.6 179, 161 NE, *PL
5 p-Coumaric acid 4-O-glucoside C15H18O8 14.953 [M − H]− 326.1002 325.0929 325.0926 −0.9 163 *PE, PL
6 3-Caffeoylquinic acid C16H18O9 20.038 [M − H]− 354.0951 353.0878 353.0864 −4.0 253, 190, 144 *NE, AP, PE, PL
7 3-Feruloylquinic acid C17H20O9 20.817 [M − H]− 368.1107 367.1034 367.1023 −3.0 298, 288, 192, 191 NE, AP, *PE, PL
8 Ferulic acid 4-O-glucuronide C16H18O10 22.305 [M − H]− 370.0900 369.0827 369.0826 −0.3 193 AP, *PL
9 Ferulic acid C10H10O4 23.467 [M − H]− 194.0579 193.0506 193.0501 −2.6 178, 149, 134 *NE, PL, AP
10 Ferulic acid 4-O-glucoside C16H20O9 23.500 [M − H]− 356.1107 355.1034 355.1032 −0.6 193, 178, 149, 134 *NE, AP, PL
11 3-p-Coumaroylquinic acid C16H18O8 27.013 [M − H]− 338.1002 337.0929 337.0918 −3.3 265, 173, 162 PL, *PE, AP, NE
12 m-Coumaric acid C9H8O3 27.808 [M − H]− 164.0473 163.0400 163.0394 −3.7 119 *NE, AP, PE, PL
13 Caffeic acid C9H8O4 32.032 [M − H]− 180.0423 179.0350 179.0347 −1.7 143, 133 *NE, PL
14 1-Sinapoyl-2-feruloylgentiobiose C33H40O18 36.370 [M − H]− 724.2215 723.2142 723.2124 −2.5 529, 499 AP
15 Hydroxycaffeic acid C9H8O5 37.033 [M − H]− 196.0372 195.0299 195.0298 −0.5 151 PE, *PL
16 3-Sinapoylquinic acid C18H22O10 41.574 [M − H]− 398.1213 397.1140 397.1129 −2.8 233, 179 NE

Hydroxybenzoic acids
17 Ellagic acid acetyl-xyloside C21H16O13 4.101 [M − H]− 476.0591 475.0518 475.0498 −4.2 301 PE
18 Gallic acid 4-O-glucoside C13H16O10 6.914 [M − H]− 332.0743 331.0670 331.0675 1.5 169, 125 *PL, AP

19 Protocatechuic acid
4-O-glucoside C13H16O9 7.382 [M − H]− 316.0794 315.0721 315.0732 3.5 153 *PE, APt, PL

20 2-Hydroxybenzoic acid C7H6O3 20.237 [M − H]− 138.0317 137.0244 137.0240 −2.9 93 *NE, AP, PE
21 2,3-Dihydroxybenzoic acid C7H6O4 32.082 [M − H]− 154.0266 153.0193 153.0190 −2.0 109 *NE, PE, PL
22 3-O-Methylgallic acid C8H8O5 84.390 **[M + H]+ 184.0372 185.0445 185.0450 2.7 170, 142 PE

Hydroxyphenylpropanoic acids

23 Dihydroferulic acid
4-O-glucuronide C16H20O10 5.689 [M − H]− 372.1056 371.0983 371.0988 1.3 195 NE, AP, *PL

24
3-Hydroxy-3-(3-

hydroxyphenyl)propionic
acid

C9H10O4 7.083 [M − H]− 182.0579 181.0506 181.0511 2.8 163, 135, 119 PE

25 Dihydrocaffeic acid
3-O-glucuronide C15H18O10 17.454 [M − H]− 358.0900 357.0827 357.0819 −2.2 181 PE
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Table 3. Cont.

No. Compound
Name

Moleular
Formula

RT
(min)

Ionization
(ESI−/ESI+)

Molecular
Weight

Theoretical
Weight (m/z)

Observed
Weight (m/z)

Error
(ppm)

MS/MS Product
Ions Samples

Hydroxyphenylacetic acids
26 3,4-Dihydroxyphenylacetic acid C8H8O4 20.715 [M − H]− 168.0423 167.0350 167.0344 −3.6 149, 123 NE, *AP, PE, PL

Flavonoids
Flavonols

27 Isorhamnetin C16H12O7 27.076 [M − H]− 316.0583 315.0510 315.0504 −1.9 300, 271 PL
28 Myricetin 3-O-rutinoside C27H30O17 32.960 [M − H]− 626.1483 625.1410 625.1399 −1.8 301 *NE, PE
29 Quercetin 3-O-glucosyl-xyloside C26H28O16 34.730 [M − H]− 596.1377 595.1304 595.1290 −2.4 265, 138, 116 NE, *PL
30 Kaempferol 3,7-O-diglucoside C27H30O16 37.284 [M − H]− 610.1534 609.1461 609.1445 −2.6 447, 285 *NE, AP, PE, PL
31 Myricetin 3-O-rhamnoside C21H20O12 39.355 [M − H]− 464.0955 463.0882 463.0874 −1.7 317 *NE, PE, PL

32 Kaempferol 3-O-glucosyl-
rhamnosyl-galactoside C33H40O20 40.283 [M − H]− 756.2113 755.2040 755.2064 3.2 285 *PE, PL

33
Kaempferol

3-O-(2”-rhamnosyl-galactoside)
7-O-rhamnoside

C33H40O19 42.036 [M − H]− 740.2164 739.2091 739.2106 2.0 593, 447, 285 AP, *PL

34 Quercetin 3-O-arabinoside C20H18O11 42.798 [M − H]− 434.0849 433.0776 433.0772 −0.9 301 PE, *PL
Flavanols

35 Procyanidin dimer B1 C30H26O12 17.139 [M − H]− 578.1424 577.1351 577.1342 −1.6 451 NE, *PE, PL
36 Procyanidin trimer C1 C45H38O18 19.177 [M − H]− 866.2058 865.1985 865.1959 −3.0 739, 713, 695 *PE, PL
37 Cinnamtannin A2 C60H50O24 19.422 [M − H]− 1154.2692 1153.2619 1153.2609 −0.9 739 PL
38 (+)-Catechin C15H14O6 19.704 [M − H]− 290.0790 289.0717 289.0717 0.0 245, 205, 179 *AP, PL, PE

39 4′-O-Methyl-(-)-epigallocatechin
7-O-glucuronide C22H24O13 32.112 [M − H]− 496.1217 495.1144 495.1138 −1.2 451, 313 NE, PE, *PL

Flavones

40 Apigenin 7-O-(6”-malonyl-
apiosyl-glucoside) C29H30O17 4.416 [M − H]− 650.1483 649.1410 649.1429 2.9 605 PE

41 Apigenin 6,8-di-C-glucoside C27H30O15 43.461 [M − H]− 594.1585 593.1512 593.1500 −2.0 503, 473 *AP, PE, PL

42 6-Hydroxyluteolin
7-O-rhamnoside C21H20O11 46.460 [M − H]− 448.1006 447.0933 447.0938 1.1 301 *AP, PE, PL

43 Apigenin 6-C-glucoside C21H20O10 55.256 [M − H]− 432.1056 431.0983 431.0984 0.2 413, 341, 311 PL
Isoflavonoids

44 6”-O-Acetyldaidzin C23H22O10 4.413 [M − H]− 458.1213 457.1140 457.1125 −3.3 221 PL
45 Violanone C17H16O6 20.267 [M − H]− 316.0947 315.0874 315.0868 −1.9 300, 285, 135 PL
46 3′-Hydroxydaidzein C15H10O5 81.970 [M + H]+ 270.0528 271.0601 271.0610 3.3 253, 241, 225 AP

Flavanones
47 Neoeriocitrin C27H32O15 34.931 [M − H]− 596.1741 595.1668 595.1650 −3.0 431, 287 NE
48 Narirutin C27H32O14 41.624 [M − H]− 580.1792 579.1719 579.1696 −4.0 271 NE
49 Hesperetin 3′-O-glucuronide C22H22O12 46.562 [M − H]− 478.1111 477.1038 477.1044 1.3 301, 175, 113, 85 NE, *PE
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Table 3. Cont.

No. Compound
Name

Moleular
Formula

RT
(min)

Ionization
(ESI−/ESI+)

Molecular
Weight

Theoretical
Weight (m/z)

Observed
Weight (m/z)

Error
(ppm)

MS/MS Product
Ions Samples

Dihydroflavonols
50 Dihydroquercetin C15H12O7 5.775 [M − H]− 304.0583 303.0510 303.0507 −1.0 285, 275, 151 PE

51 Dihydromyricetin
3-O-rhamnoside C21H22O12 23.846 [M − H]− 466.1111 465.1038 465.1050 2.6 301 *NE, PE, PL

52 Dihydroquercetin
3-O-rhamnoside C21H22O11 27.029 [M − H]− 450.1162 449.1089 449.1069 −4.5 303 NE

Anthocyanins

53

Cyanidin
3-O-(2-O-(6-O-(E)-caffeoyl-D

glucoside)-D-glucoside)-5-O-D-
glucoside

C43H49O24 39.482 [M + H]+ 949.2614 950.2687 950.2676 −1.2 787, 463, 301 PE

Dihydrochalcones
54 Phloridzin C21H24O10 51.681 [M − H]− 436.1369 435.1296 435.1307 2.5 273 PE

Lignans
55 7-Hydroxymatairesinol C20H22O7 41.309 [M − H]− 374.1366 373.1293 373.1298 1.3 343, 313, 298, 285 NE

Other polyphenols
Hydroxybenzaldehydes

56 4-Hydroxybenzaldehyde C7H6O2 44.769 [M − H]− 122.0368 121.0295 121.0298 2.5 77 PE, *PL
57 p-Anisaldehyde C8H8O2 55.681 **[M + H]+ 136.0524 137.0597 137.0599 1.5 122, 109 NE, AP, PE, *PL

Hydroxycoumarins
58 Scopoletin C10H8O4 36.851 [M − H]− 192.0423 191.0350 191.0345 −2.6 176 AP

Tyrosols
59 3,4-DHPEA-AC C10H12O4 11.802 [M − H]− 196.0736 195.0663 195.0657 −3.1 135 AP

* Compound was detected in more than one stone fruit samples, data presented in this table are from asterisk sample. ** Compounds were detected in both negative [M − H]− and positive [M + H]+ mode of
ionization while only single mode data are presented. RT refers to retention time. Stone fruits samples mentioned in abbreviations are Peach “PE”, Plum “PL”, Apricot “AP”, and Nectarine “NE”.
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Hydroxyphenylpropanoic acids and hydroxyphenylacetic acids
According to our results, three hydroxyphenylpropanoic acids and one hydroxypheny-

lacetic acid were tentatively characterized in stone fruit waste samples.
Compound 23 (Dihydroferulic acid 4-O-glucuronide) was detected only in the negative

ionization mode with the [M − H]− precursor ions at m/z 371.0988. The characteristic loss
of the glucuronide (176 Da) moiety was observed, which produced the product ions at m/z
195 [83]. Most of the hydroxyphenylpropanoic acids and hydroxyphenylacetic acids were
detected for the first time in stone fruits waste. Two out of three hydroxyphenylpropanoic
acid derivatives (Compound 24, 25) were detected only in peach and have been reported
in palm fruit [40]. Dihydroferulic acid 4-O-glucuronide (Compound 23) was reported in
Opuntia ficus-indica fruit with antioxidant potential by Aruwa, et al. [84]. Compound 26
was identified in all stone fruits and previously reported in different mango peel samples
by Peng, et al. [37].

Flavonoids

Focusing on flavonoids, eight sub-classes have been identified in stone fruit samples,
including eight flavonols, five flavanols, four flavones, three isoflavonoids, three flavanones,
three dihydroflavonols, one anthocyanin and one dihydrochalcone.

Flavonols
Flavonols are common flavonoids and have been found to have antioxidant and

antiatherogenic properties [85]. In this research, eight flavonols were tentatively character-
ized. Isorhamnetin (Compound 27, [M − H]− at m/z 315.0504) was found only in plum
in negative mode, and identified according to the product ions at m/z 300 and m/z 271,
corresponding to the loss of CH3 and CO2 from the precursor [86]. To our best knowledge,
it is the first time to report this compound in stone fruits; however, it was previously found
in citrus fruits [87]. Three kaempferol derivatives including Compound 30 (Kaempferol
3,7-O-diglucoside), Compound 32 (Kaempferol 3-O-glucosyl-rhamnosyl-galactoside) and
Compound 33 (Kaempferol 3-O-(2”-rhamnosyl-galactoside) 7-O-rhamnoside) were tenta-
tively characterized in our study. These derivatives has been reported previously in peach
and other fruit samples [88]. Compound 30 was also detected in all stone fruit samples and
previously reported in saffron [89].

Flavanols
Flavanols are reported in many fruits and vegetables with antioxidant and cardio-

vascular disease prevention properties [90]. In this study, five flavanols were tentatively
identified in stone fruits waste.

Compound 35 and Compound 36 were identified as procyanidin dimer B1 and pro-
cyanidin trimer C1 appearing in most of the stone fruit waste samples based on the [M −
H]− m/z at 577.1342 and [M − H]− m/z at 865.1959. The loss of 126 Da (phloroglucinol)
from the precursor allowed the identification of procyanidin dimer B1 [91], while the iden-
tification of a procyanidin trimer C1 was achieved by comparing the MS2 with a previous
study [92], which showed product ions at m/z 739, m/z 713 and m/z 695, representing the
126 Da loss of the heterocyclic ring fission (HRF) reaction, 152-Da loss of retro-Diels–Alder
(RDA) and further loss of H2O. Procyanidin dimer B1 was found in peach, nectarine and
plum as reported in the previous literature [63,66]. In contrast, procyanidin trimer C1 was
first identified in stone fruits but it was previously found in mutamba fruit [93]. Compound
(37), which appeared only in plum, was identified as Cinnamtannin A2. To the best of
our knowledge, it was also found in stone fruits for the first time, but it has been reported
previously in strawberry [92]. Compound (38) was detected as (+)-catechin in apricot,
plum and peach samples. It has been confirmed that (+)-catechin is mostly found in stone
fruits including plum, apricot, peach and cherry [68].

Flavones, isoflavonoids and flavanones
Flavones are components of various of edible plants, including fruits and vegetables

and also present in beverages such as tea, wine and coffee. Because of their antioxidant,
anti-microbial and anti-inflammatory activities, flavones could play an important role in
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metabolic diseases [94]. In terms of stone fruits, we tentatively characterized four flavones,
three isoflavonoids and three flavanones. Compound 40 presenting only in peach in the
negative mode was proposed as apigenin 7-O-(6”-malonyl-apiosyl-glucoside) based on the
[M − H]− m/z at 649.1429 and confirmed by the product ions at m/z 605, corresponding
to the loss of CO2 (44 Da) from the precursor ion [95]. Compound 47 was tentatively
characterized as neoeriocitrin based on the precursor ions [M − H]− at m/z 595.1650. In
the MS/MS experiment, neoeriocitrin was confirmed by product ions at m/z 431 [M − H
− rhamnoside − H2O] and m/z 287 [M − H − rhamnoside − glucoside] [96]. To the best
of our knowledge, most of these derivatives were detected for the first time in stone fruits
waste. However, they could be found in other edible plants.

Compound 43, Apigenin 6-C-glucoside was detected in the plum sample, previous
reported in Bryonia dioica and citrus fruits [97,98]. Another flavone (Compound 40) which
was found in the peach sample was previously reported in tomato by Lucini, et al. [99].
Two of the flavones (Compounds 41, 42) were found in apricot, peach, and plum and
were identified as apigenin 6,8-di-C-glucoside and 6-hydroxyluteolin 7-O-rhamnoside,
respectively. Apigenin 6,8-di-C-glucoside was reported in tropical citrus fruits, while
6-hydroxyluteolin 7-O-rhamnoside were found in dry seed, including sesame and sun-
flower [100,101]. Compounds 44 and 45 were identified in peach and were previously
detected in soy milk and roots of Pongamia pinnata, respectively [102,103]. Compound (46),
found only in apricot, has been reported in pomegranate in a previous study [104]. As
for flavanones, neoeriocitrin and narirutin were also detected in nectarine in our study.
Previously, it has been reported that chinotto also contained neoeriocitrin [105], while
narirutin was identified in citrus fruits [106].

Dihydroflavonols, dihydrochalcones and anthocyanins
Dihydroflavonols, dihydrochalcones and anthocyanins were proved to have free radi-

cal scavenging capacity [107]. In our study, three dihydroflavonols, one dihydrochalcone
and one anthocyanin have been identified in stone fruits.

Dihydroquercetin (Compound 50) and dihydromyricetin 3-O-rhamnoside (Compound
52) and were detected in negative mode with [M − H]− m/z at 303.0507 and m/z 465.1050.
The identity of dihydroquercetin was confirmed by the fragment ions at m/z 285, m/z
275 and m/z 151, corresponding to the loss of H2O, CO and 152 Da loss by RDA cleav-
age [108], while dihydromyricetin 3-O-rhamnoside was confirmed by the product ion at
m/z 301 [M − H − rhamnose, loss of 164 Da] [109]. Two out of three dihydroflavonols
(Compounds 50 and 54) were identified in the peach sample and these compounds were
already reported in different peach varieties [110]. Dihydroquercetin 3-O-rhamnoside
(Compound 52) was found only in nectarine. Previously, it has also been reported in grape
skins [111]. Dihydromyricetin 3-O-rhamnoside (Compound 51) which was detected in
nectarine, peach and plum has been reported in the khat plant which grew in Ethiopia [112].

Lignans

Lignans are bioactive compounds with anti-inflammatory, anti-oxidant and anti-tumor
activities [113]. Only one lignan was tentatively characterized in our study. Compound 55
was identified as 7-hydroxymatairesinol according to the [M − H]− at m/z 373.1298 in nec-
tarine. As per our best knowledge, 7-hydroxymatairesinol was reported first time in stone
fruits; however, it was found in various seeds, including sunflower and pumpkin [101].

Other polyphenols

As for other polyphenols, three sub-classes in stone fruits waste have been character-
ized, which include two hydroxybenzaldehydes, one hydroxycoumarin and one tyrosol.

Compound 56 appeared both in peach and plum and was tentatively characterized
as 4-hydroxybenzaldehyde based on the precursor ion at [M − H]− at m/z 121.0298 and
confirmed based on the MS2 fragmentation, which exhibited the loss of CO2 from the
precursor, resulting in the product ion at m/z 77 [114]. It has been reported in sweet
cherry, which is another stone fruit [115]. To the best of our knowledge, p-anisaldehyde
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and scopoletin (Compounds 57 and 58) which were presented in different stone fruits,
were first identified in stone fruits while they were previously found in hawthorn [116].
3,4-DHPEA-AC (Compound 59), which belongs to tyrosol derivatives, has also been found
in olive oil [117].

The results of LC-ESI-QTOF-MS/MS illustrated that phenolic compounds are im-
portant components of stone fruits, especially hydroxycinnamic acid derivatives, hydrox-
ybenzoic acid derivatives, flavonols, flavanols and other polyphenols. These phenolic
compounds have significant free radical scavenging capacity and antioxidant activity.
Hence, stone fruits waste may have antioxidant potential and could be used for functional
foods, nutraceuticals and pharmaceuticals.

3.4.2. Distribution of Phenolic Compounds—Venn Diagram

As shown in Figure 1, Venn diagrams were applied to indicate the distribution of the
phenolic compounds in four stone fruits’ waste. The comparison illustrated that there were
differences between the composition of phenolic compounds in these four stone fruits.

Figure 1. Venn diagram of phenolic compounds presented in stone fruits waste samples. (A) shows
the relations of total phenolic compounds present in stone fruits waste; (B) shows the relations of
phenolic acids in present in stone fruits waste; (C) shows the relations of flavonoids present in stone
fruits waste; (D) shows the relations of other phenolic compounds present in stone fruits waste.

Based on Figure 1A, a total of 232 phenolic compounds were identified in four stone
fruits waste samples. Among them, 11.6% phenolic compounds were detected in all
samples. According to Figure 1B–D, 23.6% phenolic acids, 9.1% flavonoids and 6% other
phenolic compounds were found in all four samples, respectively. The proportion of
common characterized compounds of flavonoids in all stone fruits samples was similar
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to that of the total phenolic compounds. This could indicate that, although the peach,
nectarine, plum and apricot are different fruits, their compositions of flavonoids are likely
to be similar. However, the proportions of shared compounds of phenolic acids and
other phenolic compounds were different from that of total phenolic compounds. It could
be argued that phenolic acids and other phenolic compounds contributed more to the
differences in phenolic compounds and antioxidant activities among these stone fruits.
In addition, by comparing the shared compounds between any two stone fruits samples,
the phenolic composition of peach and nectarine were similar. However, the composition
of apricot was different from that of peach, nectarine and plum. Previous study has also
reported that the composition of antioxidants in peach and apricot were significantly
different [118]. Furthermore, it has been found that genotype, pre-harvest, post-harvest
and climatic conditions could influence the phenolic profile of stone fruits [119,120].

By conducting the Venn diagram, we could argue that the composition of phenolic
compounds is different among four stone fruits. However, the influence of specific phenolic
compounds and related bioactivities should be investigated in future research.

3.5. HPLC-PDA Analysis

HPLC is commonly used to determine the quantification of phenolic compounds
present in different fruits and vegetables [121]. The targeted phenolic compounds are
detected by the UV spectra and quantified by the retention times. In this research, the
HPLC-PDA was applied to quantify the phenolic composition of stone fruits waste. In
our research, 10 targeted phenolic compounds, including five phenolic acids and five
flavonoids, were quantified. As shown in Table 4, p-hydroxybenzoic acid was the highest
phenolic acid and quercetin is the most dominant flavonoid.

Table 4. Quantification of phenolic compounds in stone fruits waste samples by HPLC-photodiode array detection (PDA).

No. Compound Name Peach
(mg/g fw)

Nectarine
(mg/g fw)

Plum
(mg/g fw)

Apricot
(mg/g fw) Phenolic Class

1 Gallic acid 2.98 ± 0.18 a - 2.75 ± 0.22 a 1.25 ± 0.06 b Phenolic acids
2 Protocatechuic acid - 1.27 ± 0.09 c 3.12 ± 0.15 a 2.47 ± 0.22 b Phenolic acids
3 p-Hydroxybenzoic acid 18.64 ± 1.30 a 9.67 ± 0.48 b 14.25 ± 0.99 a 3.69 ± 0.26 c Phenolic acids
4 Chlorogenic acid 15.96 ± 0.80 a 3.59 ± 0.32 c 12.35 ± 0.74 a 4.58 ± 0.23 b Phenolic acids
5 Caffeic acid 0.98 ± 0.06 c 4.58 ± 0.27 a 3.29 ± 0.26 b - Phenolic acids
6 Catechin 7.45 ± 0.59 c 9.64 ± 0.58 b 14.58 ± 1.31 a 7.58 ± 0.61 c Flavonoids
7 Epicatechin 1.25 ± 0.08 b 0.78 ± 0.04 c 2.39 ± 0.19 a 1.39 ± 0.11 b Flavonoids
8 Epicatechin gallate 2.45 ± 0.12 a - - 0.98 ± 0.06 b Flavonoids
9 Quercetin 19.68 ± 1.38 a 12.47 ± 0.87 b 14.78 ± 1.18 b 6.37 ± 0.45 c Flavonoids
10 Kaempferol 5.98 ± 0.36 b 2.17 ± 0.20 c 7.98 ± 0.40 a 1.87 ± 0.16 c Flavonoids

All data are the mean ± SD of three replicates. Means followed by different letters (a, b, c) within the same column are significantly different
(p < 0.05) from each other. Data of peach, nectarine, plum and apricot waste are reported on a fresh weight basis.

According to Table 4, peach and plum showed significantly higher concentrations
of phenolic acids which support our TPC results. p-Hydroxybenzoic acid was the most
dominant phenolic acid in peach (18.64 ± 1.30 mg/g), nectarine and plum, respectively.
However, in apricot, chlorogenic acid exhibited the highest value. Plum waste contained all
five targeted phenolic acids with the lowest concentration in gallic acid. In a previous study,
different cultivars of peaches and nectarines grown in southern Serbia were extracted by
80% acetone (v/v) and the phenolic profile was determined by HPLC-photodiode array
detection (DAD), their results illustrated that some phenolic acids, for example chloro-
genic acid in “Vesna” peach (126.1 mg/kg) was higher than that in “Fantasia” nectarine
(31.3 mg/kg). Our phenolic concentration was slightly higher than previous published
studies, which may be explained by a different cultivar, growing regions and different
extraction solvents and methods applied [122]. Previously, Biesaga, et al. [123] have also
quantified the concentration of chlorogenic acid, gallic acid and p-hydroxybenzoic acid
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from Polish grown plums at different ripening stages and reported that the concentration
of phenolic acids decrease during ripening.

In terms of flavonoids, peach and plum also contain higher concentration than others,
which confirms the TFC result. Quercetin was the most dominant flavonoid in peach
(19.68 ± 1.38 mg/g), nectarine and plum while catechin is the highest flavonoid in apri-
cot. Moreover, peach contained more flavonoids than nectarine was in agreement of the
previous study [122]. Preciously, Campbell and Padilla-Zakour [118] conducted HPLC
to determine several flavonoids in canned American grown peaches and apricots which
were extracted by methanol/water solution. However, the concentration of flavonoids
in “Harogem” apricot were higher than that in “Redhaven” peach, which is different to
our research. Regarding the catechin and epicatechin, the concentration of catechin was
higher than epicatechin in all four Australian grown stone fruits waste. Previously, Liao,
et al. [124] quantified the concentration of catechin and epicatechin in Georgian grown
peach cultivars, including “Carored”, “Golden Prince”, “Ruby Prince”, “August Prince” and
“O’Henry” and confirmed that catechin and epicatechin in peach were higher than nectarine.
The difference in results could be due to different extraction method and type of solvents
and samples [125].

4. Conclusions

Based on this research, it is concluded that plum waste contained higher concentra-
tions of total phenolic compounds and flavonoids than other stone fruit wastes, while
apricot had higher concentration of tannins. Moreover, nectarine had higher antioxidant
capacity in DPPH, FRAP and TAC assays as compared to other stone fruit waste. The
LC-ESI-QTOF-MS/MS showed phenolic profiling in stone fruit waste while HPLC-PDA
confirmed that targeted phenolic compounds were significantly higher in plum and peach
as compared to other stone fruit waste. In short, the obtained results could support the
applications and repurposing of stone fruits waste for functional foods, feed, nutraceuticals
and pharmaceutical industries.
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