1,932 research outputs found
Mott transition in the Hubbard model away from particle-hole symmetry
We solve the Dynamical Mean Field Theory equations for the Hubbard model away
from the particle-hole symmetric case using the Density Matrix Renormalization
Group method. We focus our study on the region of strong interactions and
finite doping where two solutions coexist. We obtain precise predictions for
the boundaries of the coexistence region. In addition, we demonstrate the
capabilities of this precise method by obtaining the frequency dependent
optical conductivity spectra.Comment: 4 pages, 4 figures; updated versio
Evidence of quantum criticality in the doped Haldane system Y2BaNiO5
Experimental bulk susceptibility X(T) and magnetization M(H,T) of the
S=1-Haldane chain system doped with nonmagnetic impurities, Y2BaNi1-xZnxO5
(x=0.04,0.06,0.08), are analyzed. A numerical calculation for the low-energy
spectrum of non-interacting open segments describes very well experimental data
above 4 K. Below 4 K, we observe power-law behaviors, X(T)=T^-alpha and
M(H,T)/T^(1-alpha)=f(alpha,(H/T)), with alpha (<1) depending on the doping
concentration x.This observation suggests the appearance of a gapless quantum
phase due to a broad distribution of effective couplings between the
dilution-induced moments.Comment: 4 pages, 3 figure
State-of-the-art techniques for calculating spectral functions in models for correlated materials
The dynamical mean field theory (DMFT) has become a standard technique for
the study of strongly correlated models and materials overcoming some of the
limitations of density functional approaches based on local approximations. An
important step in this method involves the calculation of response functions of
a multiorbital impurity problem which is related to the original model.
Recently there has been considerable progress in the development of techniques
based on the density matrix renormalization group (DMRG) and related matrix
product states (MPS) implying a substantial improvement to previous methods. In
this article we review some of the standard algorithms and compare them to the
newly developed techniques, showing examples for the particular case of the
half-filled two-band Hubbard model.Comment: 8 pages, 4 figures, to be published in EPL Perspective
Spin order in the one-dimensional Kondo and Hund lattices
We study numerically the one-dimensional Kondo and Hund lattices consisting
of localized spins interacting antiferro or ferromagnetically with the
itinerant electrons, respectively. Using the Density Matrix Renormalization
Group we find, for both models and in the small coupling regime, the existence
of new magnetic phases where the local spins order forming ferromagnetic
islands coupled antiferromagnetically. Furthermore, by increasing the
interaction parameter we find that this order evolves toward the
ferromagnetic regime through a spiral-like phase with longer characteristic
wave lengths. These results shed new light on the zero temperature magnetic
phase diagram for these models.Comment: PRL, to appea
Intra-household work time synchronization: Togetherness or material benefits?
If partners derive utility from joint leisure time, it is expected that they will coordinate their work schedules in order to increase the amount of joint leisure. In order to control for differences in constraints and selection effects, this paper uses a new matching procedure, providing answers to the following questions: (1) Do partners coordinate their work schedules and does this result in work time synchronization?; (2) which partners synchronize more work hours?; and (3) is there a preference for togetherness? We find that coordination results in more synchronized work hours. The presence of children in the household is the main cause why some partners synchronize their work times less than other partners. Finally, partners coordinate their work schedules in order to have more joint leisure time, which is evidence for togetherness preferences
Spin Order In One-dimensional Kondo And Hund Lattices.
We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferromagnetically or ferromagnetically with the itinerant electrons, respectively. Using the density-matrix renormalization group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter |J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wavelengths. These results shed new light on the zero temperature magnetic phase diagram for these models.9317720
Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: An open label, non-randomized, controlled study
Additional file 1: Table S1. Detailed baseline characteristics for participants in the continuous care intervention (CCI) and usual care (UC) groups
- …