45 research outputs found
A mathematical framework for active circuits based on port equivalence using limit variables
Published versio
The stress corrosion cracking of maraging steels
PhD ThesisThe stress corrosion cracking of 18% Ni maraging
steel has been investigated in 0.6 N sodium chloride
solutions. The principal aim was to determine the dependence
of the cracking process on structural and environmental
variables.
The susceptibility towards intergranular stress
corrosion cracking was found to be associated with the
state of the prior austenite grain boundary network. Processing
variables which produce changes in the size or chemical nature of the grain boundaries were found to have
the greatest effect on susceptibility. The cracking
propensity was found to be effected by solution pH and the
process appeared to be under cathodic control. Crack
initiation was associated with the formation of structurally
independent surface fissures, whose growth depend on the
solution condition rather than the pH value.
Investigations were carried out into the environmental
conditions required to produce stress corrosion and hydrogen
embrittlement failures. The evidence produced indicates
that these two mechanisms can be characterised by the
potential range under which they occur and by the
associated fracture surfaces. As a result the failures
obtained for Maraging Steels in 0.6 N sodium chloride
solutions under naturally corroding conditions, can be
considered to be due to a stress corrosion cracking mechanism.Science Research Council
Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities
Vertical stacking of atomically thin layered materials opens new possibilities for the fabrication of heterostructures with favorable optoelectronic properties. The combination of graphene, hexagonal boron nitride and semiconducting transition metal dichalcogenides allows fabrication of electroluminescence (EL) devices, compatible with a wide range of substrates. Here, we demonstrate a full integration of an electroluminescent van der Waals heterostructure in a monolithic optical microcavity made of two high reflectivity dielectric distributed Bragg reflectors (DBRs). Owing to the presence of graphene and hexagonal boron nitride protecting the WSe2 during the top mirror deposition, we fully preserve the optoelectronic behaviour of the device. Two bright cavity modes appear in the EL spectrum featuring Q-factors of 250 and 580 respectively: the first is attributed directly to the monolayer area, while the second is ascribed to the portion of emission guided outside the WSe2 island. By embedding the EL device inside the microcavity structure, a significant modification of the directionality of the emitted light is achieved, with the peak intensity increasing by nearly two orders of magnitude at the angle of the maximum emission compared with the same EL device without the top DBR. Furthermore, the coupling of the WSe2 EL to the cavity mode with a dispersion allows a tuning of the peak emission wavelength exceeding 35 nm (80 meV) by varying the angle at which the EL is observed from the microcavity. This work provides a route for the development of compact vertical-cavity surface-emitting devices based on van der Waals heterostructures
Muscle glycogen utilisation during Rugby match play: Effects of pre-game carbohydrate
Objectives: Although the physical demands of Rugby League (RL) match-play are well-known, the fuel sources supporting energy-production are poorly understood. We therefore assessed muscle glycogen utilisation and plasma metabolite responses to RL match-play after a relatively high (HCHO) or relatively low CHO (LCHO) diet. Design: Sixteen (mean ± SD age; 18 ± 1 years, body-mass; 88 ± 12 kg, height 180 ± 8 cm) professional players completed a RL match after 36-h consuming a non-isocaloric high carbohydrate (n = 8; 6 g kg day−1) or low carbohydrate (n = 8; 3 g kg day−1) diet. Methods: Muscle biopsies and blood samples were obtained pre- and post-match, alongside external and internal loads quantified using Global Positioning System technology and heart rate, respectively. Data were analysed using effects sizes ±90% CI and magnitude-based inferences. Results: Differences in pre-match muscle glycogen between high and low carbohydrate conditions (449 ± 51 and 444 ± 81 mmol kg−1 d.w.) were unclear. High (243 ± 43 mmol kg−1 d.w.) and low carbohydrate groups (298 ± 130 mmol kg−1 d.w.) were most and very likely reduced post-match, respectively. For both groups, differences in pre-match NEFA and glycerol were unclear, with a most likely increase in NEFA and glycerol post-match. NEFA was likely lower in the high compared with low carbohydrate group post-match (0.95 ± 0.39 mmol l−1 and 1.45 ± 0.51 mmol l−1, respectively), whereas differences between the 2 groups for glycerol were unclear (98.1 ± 33.6 mmol l−1 and 123.1 ± 39.6 mmol l−1) in the high and low carbohydrate groups, respectively. Conclusions: Professional RL players can utilise ∼40% of their muscle glycogen during a competitive match regardless of their carbohydrate consumption in the preceding 36-h
WSe2 Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature
Monolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for optoelectronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQWs) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS2- and MoSe2-based LEQWs shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications. Here we compare MoSe2 and WSe2 LEQWs. We show that the EQE of WSe2 devices grows with temperature, with room temperature EQE reaching 5%, which is 250× more than the previous best performance of MoS2 and MoSe2 quantum wells in ambient conditions. We attribute such different temperature dependences to the inverted sign of spin–orbit splitting of conduction band states in tungsten and molybdenum dichalcogenides, which makes the lowest-energy exciton in WSe2 dark