366 research outputs found

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Verification of Hierarchical Artifact Systems

    Get PDF
    Data-driven workflows, of which IBM's Business Artifacts are a prime exponent, have been successfully deployed in practice, adopted in industrial standards, and have spawned a rich body of research in academia, focused primarily on static analysis. The present work represents a significant advance on the problem of artifact verification, by considering a much richer and more realistic model than in previous work, incorporating core elements of IBM's successful Guard-Stage-Milestone model. In particular, the model features task hierarchy, concurrency, and richer artifact data. It also allows database key and foreign key dependencies, as well as arithmetic constraints. The results show decidability of verification and establish its complexity, making use of novel techniques including a hierarchy of Vector Addition Systems and a variant of quantifier elimination tailored to our context.Comment: Full version of the accepted PODS pape

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    An approach to computing downward closures

    Full text link
    The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes. This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property. This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom

    Algorithmic Analysis of Array-Accessing Programs

    Get PDF
    For programs whose data variables range over Boolean or finite domains, program verification is decidable, and this forms the basis of recent tools for software model checking. In this paper, we consider algorithmic verification of programs that use Boolean variables, and in addition, access a single array whose length is potentially unbounded, and whose elements range over pairs from Σ × D, where Σ is a finite alphabet and D is a potentially unbounded data domain. We show that the reachability problem, while undecidable in general, is (1) Pspace-complete for programs in which the array-accessing for-loops are not nested, (2) solvable in Ex-pspace for programs with arbitrarily nested loops if array elements range over a finite data domain, and (3) decidable for a restricted class of programs with doubly-nested loops. The third result establishes connections to automata and logics defining languages over data words

    A Verification Toolkit for Numerical Transition Systems

    Get PDF
    This paper presents a publicly available toolkit and a benchmark suite for rigorous verification of Integer Numerical Transition Systems (INTS), which can be viewed as control-flow graphs whose edges are annotated by Presburger arithmetic formulas. We present FLATA and ELDARICA, two verification tools for INTS. The FLATA system is based on precise acceleration of the transition relation, while the ELDARICA system is based on predicate abstraction with interpolation-based counterexample-driven refinement. The ELDARICA verifier uses the PRINCESS theorem prover as a sound and complete interpolating prover for Presburger arithmetic. Both systems can solve several examples for which previous approaches failed, and present a useful baseline for verifying integer programs. The infrastructure is a starting point for rigorous benchmarking, competitions, and standardized communication between tools

    Languages ordered by the subword order

    Full text link
    We consider a language together with the subword relation, the cover relation, and regular predicates. For such structures, we consider the extension of first-order logic by threshold- and modulo-counting quantifiers. Depending on the language, the used predicates, and the fragment of the logic, we determine four new combinations that yield decidable theories. These results extend earlier ones where only the language of all words without the cover relation and fragments of first-order logic were considered

    Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap

    Full text link
    We characterise the performance of a surface-electrode ion "chip" trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.Comment: 6 pages, 10 figure
    corecore