127 research outputs found

    Modelling of interactions of polar and nonpolar pollutants with soil minerals and soil organic matter

    Get PDF
    Environmental pollution of soils by organic contaminants such as pesticides is one of the serious problems of our civilization. Contaminants can undergo various physical, chemical and biological transformation processes in soils governing behaviour, distribution, and fate of organic species in environment and subsequent environmental risks. Mechanistic understanding of molecular interactions of organic pollutants with main soil components represents a key factor for estimating the behaviour of contaminants in soils. Molecular modelling offers an opportunity to investigate and characterize various details of these interactions at molecular level providing specifications, which are difficult to obtain at the experimental level. This work represents a comprehensive overview of our investigations of the molecular interactions of organic contaminants with selected soil components. Particularly, we focused on the characterization of the structure and the surface complexation of the phenoxyacetic acid derivatives (herbicides MCPA and 2,4-D) and typical soil minerals such as clay minerals (kaolinite and montmorillonite) and iron oxyhydroxides (goethite and lepidocrocite). Further, interactions of several representative nonpolar polycyclic aromatic hydrocarbons (e.g. naphthalene, anthracene, pyrene, and phenanthrene) with iron oxyhydroxides were modelled, as well. It was found that in case of polar species, hydrogen bonds and electrostatic interactions play an important role in the formation of the surface complexes. In case of nonpolar PAHs, dispersion forces dominate in the planar stacking of the PAHs molecules on mineral surfaces. Another study focused at a complex 3D model representing humic substances firstly, featuring polar hydrophilic and nonpolar hydrophobic domains and also a nanopore SOM structure. This model was taken to simulate trapping and interactions of MCPA (polar) and naphthalene (nonpolar) species inside of the nanopore. It was found that MCPA is preferentially stabilized close to polar functional groups (carboxyl) whereas naphthalene interacts mostly with nonpolar aliphatic chains through dispersion interactions

    An autonomous chemically fuelled small-molecule motor

    Get PDF
    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.</p

    Footprints of climate in groundwater and precipitation

    No full text
    Abstract. In the last decades, the 18 O / 16 O signature of meteoric water became a key tracer intensively used both in hydrology and in paleoclimatology, based primarily on the correlation of the 18 O / 16 O ratio in precipitation with temperature. This correlation with temperature is generally well understood as a result of Rayleigh processes of atmospheric vapour during the formation of precipitation. The resulting isotopic signals in precipitation are also transferred into the groundwater body since the isotopic composition of groundwater is determined by the precipitation infiltrating into the ground. However, the whole variability of the 18 O / 16 O ratio especially in temporal data series of precipitation and groundwater can not be explained with temperature alone. Here we show that certain interactions between different climate induced changes in local parameters prevailing during precipitation events are able to explain a significant part of the observed deviation. These effects are superimposed by an overall isotopic pattern representing the large scale climate input primarily based on temperature. The intense variability of isotopes due to the particular topography of Austria recorded over a time period of 40 years provides an unique possibility to uncover this hidden information contributed by relative humidity and type of precipitation. Since there is a growing need to predict the variation of climate together with its associated potential hazards like floods and dry periods the results of this work are contributing to a better overall understanding of the complex interaction of climate with the corresponding water cycle.
    • …
    corecore