10,196 research outputs found

    One-loop Effective Potential for a Fixed Charged Self-interacting Bosonic Model at Finite Temperature with its Related Multiplicative Anomaly

    Get PDF
    The one-loop partition function for a charged self-interacting Bose gas at finite temperature in D-dimensional spacetime is evaluated within a path integral approach making use of zeta-function regularization. For D even, a new additional vacuum term ---overlooked in all previous treatments and coming from the multiplicative anomaly related to functional determinants-- is found and its dependence on the mass and chemical potential is obtained. The presence of the new term is shown to be crucial for having the factorization invariance of the regularized partition function. In the non interacting case, the relativistic Bose-Einstein condensation is revisited. By means of a suitable charge renormalization, for D=4 the symmetry breaking phase is shown to be unaffected by the new term, which, however, gives actually rise to a non vanishing new contribution in the unbroken phase.Comment: 25 pages, RevTex, a new Section and several explanations added concering the non-commutative residue and the physical discussio

    Charginos and Neutralinos Production at 3-3-1 Supersymmetric Model in eee^-e^- Scattering

    Get PDF
    The goal of this article is to derive the Feynman rules involving charginos, neutralinos, double charged gauge bosons and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we will calculate the production of a double charged chargino with a neutralino and also the production of a pair of single charged charginos, both in an electron- electron eee^-e^- process.Comment: 18 pages, 8 figures, 2 table

    Improved Security for Non-Volatile Main Memory

    Get PDF
    A technique that improves security for non-volatile main memory in computer systems is disclosed. Some prior approaches that secure data between OS processes in such systems reduce the number of NVM write cycles by using encryption instead of shredding (zeroing out) physical memory pages between processes. However, in some circumstances, this solution can be less secure. The disclosed technique uses a pseudorandom function to change how the major counter is updated for a page that is to be shredded in order to increase security

    Pole-placement Predictive Functional Control for over-damped systems with real poles

    Get PDF
    This paper gives new insight and design proposals for Predictive Functional Control (PFC) algorithms. Common practice and indeed a requirement of PFC is to select a coincidence horizon greater than one for high-order systems and for the link between the design parameters and the desired dynamic to be weak. Here the proposal is to use parallel first-order models to form an independent prediction model and show that with these it is possible both to use a coincidence horizon of one and moreover to obtain precisely the desired closed-loop dynamics. It is shown through analysis that the use of a coincidence horizon of one greatly simplifies coding, tuning, constraint handling and implementation. The paper derives the key results for high-order and non-minimum phase processes and also demonstrates the flexibility and potential industrial utility of the proposal

    Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method

    Full text link
    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods that are commonly used in PIC, the developed method does not produce numerical dispersion, and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma

    Discovery potential for a charged Higgs boson decaying in the chargino-neutralino channel of the ATLAS detector at the LHC

    Get PDF
    We have investigated charged Higgs boson production via the gluon-bottom quark mode, gb -> tH+, followed by its decay into a chargino and a neutralino. The calculations are based on masses and couplings given by the Minimal Supersymmetric Standard Model (MSSM) for a specific choice of MSSM parameters. The signature of the signal is characterized by three hard leptons, a substantial missing transverse energy due to the decay of the neutralino and the chargino and three hard jets from the hadronic decay of the top quark. The possibility of detecting the signal over the Standard Model (SM) and non-SM backgrounds was studied for a set of tanBeta and mA. The existence of 5-sigma confidence level regions for H+ discovery at integrated luminosities of 100 fb-1 and 300 fb-1 is demonstrated, which cover also the intermediate region 4 < tanBeta < 10 where H+ decays to SM particles cannot be used for H+ discovery
    corecore