11 research outputs found

    Die Überwachungsprogramme der internationalen Meeresschutzkonventionen für Nord- und Ostsee

    Get PDF
    The international conventions for the protection of the marine environment of the North-east Atlantic Ocean including the North Sea (OSPAR) and the Baltic Sea (HELCOM) as well as the International Council for the Exploration of the Sea (ICES) have modified their structures in the recent years towards a strategy directed approach. Committees and working groups have partly changed only their names but in many cases also the scope of their subjects. In the last two years activities have been initiated to coordinate the tasks of the marine conventions and the European Union and to merge them as much as meaningful and practicable, under a common EU Marine Strategy. This article will reflect how the organisational structures have changed since the last restructuring in the first half of the nineties, and how the contaminant and bioeffect monitoring activities of the Federal Research Centre for Fisheries are implemented in these international conventions

    Cruise Report Cruise 291 FRS 'Walther Herwig III'

    Get PDF

    Schadstoffüberwachung in Meeresfischen

    Get PDF
    For assessing the status of the marine environment of the North Sea and the Baltic Sea, international monitoring programmes are performed in the framework of the international conventions for the protection of the marine environment of the North Atlantic Ocean and the Baltic Sea. The German contribution to these programmes is covered by the national Joint Marine Monitoring Programme, which is carried out by several institutes of the coastal Federal States and the Federal Government of Germany. The Institute for Fishery Ecology of the Federal Fisheries Research Centre is responsible for the investigations of harmful substances in fish samples from the open sea areas. This article gives a short description of how this task is performed and, as an example, how concentrations of polychlorinated biphenyls and mercury in plaice from the German Bight have developed over a period of thirteen and eight years, respectively

    Zusammenhang zwischen Schadstoffen aus der Elbe und missgebildeten Fischembryonen in der Deutschen Bucht.

    Get PDF
    The trends of malformation prevalence in embryos of dab, Limanda limanda, in the southern North Sea after the year 1990 mirrored the drop in major pollutants in the rivers draining into the German Bight. Despite this general decline we detected a pollution event in the southern North Sea in winter 1995/1996 employing the prevalence of malformations in dab embryos as an indicator. An abrupt rise in malformation prevalence in the embryos of dab, corresponded to a dramatic increase in DDT levels in parent fish from the same area, indicating a hitherto unnoticed introduction of considerable quantities of DDT into the system. This input could be traced back to discharges of unknown origen into the River Elbe

    Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention

    Get PDF
    AbstractUptake and discharge of ballast water by ocean-going ships contribute to the worldwide spread of aquatic invasive species, with negative impacts on the environment, economies, and public health. The International Ballast Water Management Convention aims at a global answer. The agreed standards for ballast water discharge will require ballast water treatment. Systems based on various physical and/or chemical methods were developed for on-board installation and approved by the International Maritime Organization. Most common are combinations of high-performance filters with oxidizing chemicals or UV radiation. A well-known problem of oxidative water treatment is the formation of disinfection by-products, many of which show genotoxicity, carcinogenicity, or other long-term toxicity. In natural biota, genetic damages can affect reproductive success and ultimately impact biodiversity. The future exposure towards chemicals from ballast water treatment can only be estimated, based on land-based testing of treatment systems, mathematical models, and exposure scenarios. Systematic studies on the chemistry of oxidants in seawater are lacking, as are data about the background levels of disinfection by-products in the oceans and strategies for monitoring future developments. The international approval procedure of ballast water treatment systems compares the estimated exposure levels of individual substances with their experimental toxicity. While well established in many substance regulations, this approach is also criticised for its simplification, which may disregard critical aspects such as multiple exposures and long-term sub-lethal effects. Moreover, a truly holistic sustainability assessment would need to take into account factors beyond chemical hazards, e.g. energy consumption, air pollution or waste generation

    Technical guidance on monitoring for the Marine Stategy Framework Directive

    Get PDF
    The Marine Directors of the European Union (EU), Acceding Countries, Candidate Countries and EFTA Countries have jointly developed a common strategy for supporting the implementation of the Directive 2008/56/EC, “the Marine Strategy Framework Directive” (MSFD). The main aim of this strategy is to allow a coherent and harmonious implementation of the Directive. Focus is on methodological questions related to a common understanding of the technical and scientific implications of the Marine Strategy Framework Directive. In particular, one of the objectives of the strategy is the development of non-legally binding and practical documents, such as this technical guidance on monitoring for the MSFD. These documents are targeted to those experts who are directly or indirectly implementing the MSFD in the marine regions. The document has been prepared by the Joint Research Centre of the European Commission (JRC) with the contribution of experts from Member States, Regional Seas Conventions and ICES and following consultation of the Working Group on Good Environmental Status.JRC.H.1-Water Resource
    corecore