97 research outputs found

    High Resolution Genotyping of Clinical Aspergillus flavus Isolates from India Using Microsatellites

    Get PDF
    Contains fulltext : 124312.pdf (publisher's version ) (Open Access)BACKGROUND: Worldwide, Aspergillus flavus is the second leading cause of allergic, invasive and colonizing fungal diseases in humans. However, it is the most common species causing fungal rhinosinusitis and eye infections in tropical countries. Despite the growing challenges due to A. flavus, the molecular epidemiology of this fungus has not been well studied. We evaluated the use of microsatellites for high resolution genotyping of A. flavus from India and a possible connection between clinical presentation and genotype of the involved isolate. METHODOLOGY/PRINCIPAL FINDINGS: A panel of nine microsatellite markers were selected from the genome of A. flavus NRRL 3357. These markers were used to type 162 clinical isolates of A. flavus. All nine markers proved to be polymorphic displaying up to 33 alleles per marker. Thirteen isolates proved to be a mixture of different genotypes. Among the 149 pure isolates, 124 different genotypes could be recognized. The discriminatory power (D) for the individual markers ranged from 0.657 to 0.954. The D value of the panel of nine markers combined was 0.997. The multiplex multicolor approach was instrumental in rapid typing of a large number of isolates. There was no correlation between genotype and the clinical presentation of the infection. CONCLUSIONS/SIGNIFICANCE: There is a large genotypic diversity in clinical A. flavus isolates from India. The presence of more than one genotype in clinical samples illustrates the possibility that persons may be colonized by multiple genotypes and that any isolate from a clinical specimen is not necessarily the one actually causing infection. Microsatellites are excellent typing targets for discriminating between A. flavus isolates from various origins

    A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix<sup>® </sup>technology provides both a quantitative fluorescence signal and a decision (<it>detection call</it>: absent or present) based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM) patients.</p> <p>Results</p> <p>After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i) determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii) predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii) predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM).</p> <p>Conclusion</p> <p>This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with clinical groups, and looks particularly promising through international cooperative projects like the "Microarray Quality Control project of US FDA" MAQC as a predictive classifier for diagnostic, prognostic and response to treatment. Finally, it can be used as a powerful tool to mine published data generated on Affymetrix systems and more generally classify samples with binary feature values.</p

    In Vitro Transformation of Primary Human CD34+ Cells by AML Fusion Oncogenes: Early Gene Expression Profiling Reveals Possible Drug Target in AML

    Get PDF
    Different fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of 4 major groups of AML fusion oncogenes on primary human CD34+ cells. As expected from their clinical similarities, MLL-AF9 and NUP98-HOXA9 had very similar effects in vitro. They both caused erythroid hyperplasia and a clear block in erythroid and myeloid maturation. On the other hand, AML1-ETO and PML-RARA had only modest effects on myeloid and erythroid differentiation. All oncogenes except PML-RARA caused a dramatic increase in long-term proliferation and self-renewal. Gene expression profiling revealed two distinct temporal patterns of gene deregulation. Gene deregulation by MLL-AF9 and NUP98-HOXA9 peaked 3 days after transduction. In contrast, the vast majority of gene deregulation by AML1-ETO and PML-RARA occurred within 6 hours, followed by a dramatic drop in the numbers of deregulated genes. Interestingly, the p53 inhibitor MDM2 was upregulated by AML1-ETO at 6 hours. Nutlin-3, an inhibitor of the interaction between MDM2 and p53, specifically inhibited the proliferation and self-renewal of primary human CD34+ cells transduced with AML1-ETO, suggesting that MDM2 upregulation plays a role in cell transformation by AML1-ETO. These data show that differences among AML fusion oncogenes can be recapitulated in vitro using primary human CD34+ cells and that early gene expression profiling in these cells can reveal potential drug targets in AML

    Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.

    Get PDF
    Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies

    Resistance of Asian Cryptococcus neoformans Serotype A Is Confined to Few Microsatellite Genotypes

    Get PDF
    Contains fulltext : 109375.pdf (publisher's version ) (Open Access)BACKGROUND: Cryptococcus neoformans is a pathogenic yeast that causes cryptococcosis, a life threatening disease. The prevalence of cryptococcosis in Asia has been rising after the onset of the AIDS epidemic and estimates indicate more than 120 cases per 1,000 HIV-infected individuals per year. Almost all cryptococcal disease cases in both immunocompromised and immunocompetent patients in Asia are caused by C. neoformans var. grubii. Epidemiological studies on C. neoformans in pan-Asia have not been reported. The present work studies the genetic diversity of the fungus by microsatellite typing and susceptibility analysis of approximately 500 isolates from seven Asian countries. METHODOLOGY/PRINCIPAL FINDINGS: Genetic diversity of Asian isolates of C. neoformans was determined using microsatellite analysis with nine microsatellite markers. The analysis revealed eight microsatellite complexes (MCs) which showed different distributions among geographically defined populations. A correlation between MCs and HIV-status was observed. Microsatellite complex 2 was mainly associated with isolates from HIV-negative patients, whereas MC8 was associated with those from HIV-positive patients. Most isolates were susceptible to amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole, but 17 (3.4%) and 10 (2%) were found to be resistant to 5-flucytosine and fluconazole, respectively. Importantly, five Indonesian isolates (approximately 12.5% from all Indonesian isolates investigated and 1% from the total studied isolates) were resistant to both antifungals. The majority of 5-flucytosine resistant isolates belonged to MC17. CONCLUSIONS: The findings showed a different distribution of genotypes of C. neoformans var. grubii isolates from various countries in Asia, as well as a correlation of the microsatellite genotypes with the original source of the strains and resistance to 5-flucytosine

    A mixed methods pilot study with a cluster randomized control trial to evaluate the impact of a leadership intervention on guideline implementation in home care nursing

    Get PDF
    Abstract Background Foot ulcers are a significant problem for people with diabetes. Comprehensive assessments of risk factors associated with diabetic foot ulcer are recommended in clinical guidelines to decrease complications such as prolonged healing, gangrene and amputations, and to promote effective management. However, the translation of clinical guidelines into nursing practice remains fragmented and inconsistent, and a recent homecare chart audit showed less than half the recommended risk factors for diabetic foot ulcers were assessed, and peripheral neuropathy (the most significant predictor of complications) was not assessed at all. Strong leadership is consistently described as significant to successfully transfer guidelines into practice. Limited research exists however regarding which leadership behaviours facilitate and support implementation in nursing. The purpose of this pilot study is to evaluate the impact of a leadership intervention in community nursing on implementing recommendations from a clinical guideline on the nursing assessment and management of diabetic foot ulcers. Methods Two phase mixed methods design is proposed (ISRCTN 12345678). Phase I: Descriptive qualitative to understand barriers to implementing the guideline recommendations, and to inform the intervention. Phase II: Matched pair cluster randomized controlled trial (n = 4 centers) will evaluate differences in outcomes between two implementation strategies. Primary outcome: Nursing assessments of client risk factors, a composite score of 8 items based on Diabetes/Foot Ulcer guideline recommendations. Intervention: In addition to the organization's 'usual' implementation strategy, a 12 week leadership strategy will be offered to managerial and clinical leaders consisting of: a) printed materials, b) one day interactive workshop to develop a leadership action plan tailored to barriers to support implementation; c) three post-workshop teleconferences. Discussion This study will provide vital information on which leadership strategies are well received to facilitate and support guideline implementation. The anticipated outcomes will provide information to assist with effective management of foot ulcers for people with diabetes. By tracking clinical outcomes associated with guideline implementation, health care administrators will be better informed to influence organizational and policy decision-making to support evidence-based quality care. Findings will be useful to inform the design of future multi-centered trials on various clinical topics to enhance knowledge translation for positive outcomes. Trial Registration Current Control Trials ISRCTN0691089

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    The dot-probe task to measure emotional attention: A suitable measure in comparative studies?

    Get PDF
    corecore