230 research outputs found

    How Reliable Is Ki-67 Immunohistochemistry in Grade 2 Breast Carcinomas? A QA Study of the Swiss Working Group of Breast- and Gynecopathologists

    Get PDF
    Adjuvant chemotherapy decisions in breast cancer are increasingly based on the pathologist's assessment of tumor proliferation. The Swiss Working Group of Gyneco- and Breast Pathologists has surveyed inter- and intraobserver consistency of Ki-67-based proliferative fraction in breast carcinomas. Methods Five pathologists evaluated MIB-1-labeling index (LI) in ten breast carcinomas (G1, G2, G3) by counting and eyeballing. In the same way, 15 pathologists all over Switzerland then assessed MIB-1-LI on three G2 carcinomas, in self-selected or pre-defined areas of the tumors, comparing centrally immunostained slides with slides immunostained in the different laboratoires. To study intra-observer variability, the same tumors were re-examined 4 months later. Results The Kappa values for the first series of ten carcinomas of various degrees of differentiation showed good to very good agreement for MIB-1-LI (Kappa 0.56–0.72). However, we found very high inter-observer variabilities (Kappa 0.04–0.14) in the read-outs of the G2 carcinomas. It was not possible to explain the inconsistencies exclusively by any of the following factors: (i) pathologists' divergent definitions of what counts as a positive nucleus (ii) the mode of assessment (counting vs. eyeballing), (iii) immunostaining technique, and (iv) the selection of the tumor area in which to count. Despite intensive confrontation of all participating pathologists with the problem, inter-observer agreement did not improve when the same slides were re-examined 4 months later (Kappa 0.01–0.04) and intra-observer agreement was likewise poor (Kappa 0.00–0.35). Conclusion Assessment of mid-range Ki-67-LI suffers from high inter- and intra-observer variability. Oncologists should be aware of this caveat when using Ki-67-LI as a basis for treatment decisions in moderately differentiated breast carcinomas

    A Near-Infrared Cell Tracker Reagent for Multiscopic In Vivo Imaging and Quantification of Leukocyte Immune Responses

    Get PDF
    The complexity of the tumor microenvironment necessitates that cell behavior is studied in a broad, multi-scale context. Although tomographic and microscopy-based far and near infrared fluorescence (NIRF, >650 nm) imaging methods offer high resolution, sensitivity, and depth penetration, there has been a lack of optimized NIRF agents to label and track cells in their native environments at different scales. In this study we labeled mammalian leukocytes with VivoTag 680 (VT680), an amine reactive N-hydroxysuccinimide (NHS) ester of a (benz) indolium-derived far red fluorescent probe. We show that VT680 diffuses into leukocytes within minutes, covalently binds to cellular components, remains internalized for days in vitro and in vivo, and does not transfer fluorescence to adjacent cells. It is biocompatible, keeps cells fully functional, and fluoresces at high intensities. In a tumor model of cytotoxic T lymphocyte (CTL) immunotherapy, we track and quantify VT680-labeled cells longitudinally at the whole-body level with fluorescence-mediated molecular tomography (FMT), within tissues at single cell resolutions by multiphoton and confocal intravital microscopy, and ex vivo by flow cytometry. Thus, this approach is suitable to monitor cells at multiple resolutions in real time in their native environments by NIR-based fluorescence imaging

    Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer

    Get PDF
    Determination of the HER2/neu (HER2) status in breast carcinoma has become necessary for the selection of breast cancer patients for trastuzumab therapy. Amplification of the gene analysed by fluorescence in situ hybridisation (FISH) or overexpression of the protein determined by immunohistochemistry (IHC) are the two major methods to establish this status. A strong correlation has been previously demonstrated between these two methods. However, FISH is not always feasible in routine practice and weakly positive IHC tumours (2+) do not always correspond to a gene amplification. Our study was performed in order to evaluate the contribution of chromogenic in situ hybridisation (CISH), which enables detection of the gene copies through an immunoperoxidase reaction. CISH was performed in 79 breast carcinomas for which the HER2 status was previously determined by IHC and FISH. The results of IHC, FISH and CISH were compared for each tumour. CISH procedures were successful in 95% of our cases. Whatever the IHC results, we found a very good concordance (96%) between CISH and FISH. Our study confirms that CISH may be an alternative to FISH for the determination of the gene amplification status in 2+ tumours. Our results allow us to think that, in many laboratories, CISH may also be an excellent method to calibrate the IHC procedures or, as a quality control test, to check regularly that the IHC signal is in agreement with the gene statu

    In vivo quantification of photosensitizer fluorescence in the skin-fold observation chamber using dual-wavelength excitation and NIR imaging

    Get PDF
    A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method was developed and applied to monitor photosensitizer meso-tetra (hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber. The method employs a combination of dual-wavelength excitation and dualwavelength detection. Excitation and detection wavelengths were selected in the NIR region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm, and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently, the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed

    Long-term prognostic significance of HER-2/neu in untreated node-negative breast cancer depends on the method of testing

    Get PDF
    INTRODUCTION: The prognostic significance of HER-2/neu in breast cancer is a matter of controversy. We have performed a study in 101 node-negative breast cancer patients with long-term follow-up not treated in the adjuvant setting, and analysed the prognostic significance of immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH), both separately and in combination, in comparison with traditional prognostic factors. METHODS: Overexpression was classified semiquantitatively according to a score (0 to 3+) (HER-2_SCO). FISH was used to analyse HER2/neu amplification (HER-2_AMP). Patients classified 2+ by IHC were examined with FISH for amplification (HER-2_ALG). Patients with 3+ overexpression as well as amplification of HER-2/neu were positive for the combined variable HER2_COM. These variables were compared with tumour size, histological grade and hormone receptor status. RESULTS: HER-2_SCO was 3+ in 20% of all tumours. HER-2_ALG was positive in 22% and amplification (HER-2_AMP) was found in 17% of all tumours. Eleven percent of the tumours showed simultaneous 3+ overexpression and amplification. Only histological grade (relative risk [RR] 3.22, 95% confidence interval [CI] 1.73–5.99, P = 0.0002) and HER-2_AMP (RR 2.47, 95% CI 1.12–5.48, P = 0.026) were significant for disease-free survival in multivariate analysis. For overall survival, both histological grade (RR 3.89, 95% CI 1.77–8.55, P = 0.0007) and HER-2_AMP (RR 3.08, 95% CI 1.24–7.66, P = 0.016) retained their independent significance. CONCLUSION: The prognostic significance of HER-2/neu in node-negative breast cancer depends on the method of testing: only the amplification of HER-2/neu is an independent prognostic factor for the long-term prognosis of untreated node-negative breast cancer

    Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis

    Get PDF
    The brain-specific angiogenesis inhibitor 1 gene has been isolated in an attempt to find fragments with p53 “functional” binding sites. As reported herein and by others, brain-specific angiogenesis inhibitor 1 expression is present in some normal tissues, but is reduced or lost in tumour tissues. Such data and its particular structure prompted the hypothesis that brain-specific angiogenesis inhibitor 1 may act as a mediator in the local angiogenesis balance. We herein demonstrate that brain-specific angiogenesis inhibitor 1 over-expression suppresses tumour angiogenesis, delaying significantly the human tumour growth in immunodeficient mice. The inhibitory effect of brain-specific angiogenesis inhibitor 1 was documented using our intravital microscopy system, strongly implicating brain-specific angiogenesis inhibitor 1 as a mediator in the control of tumour angiogenesis. In contrast, in vitro tumour cell proliferation was not inhibited by brain-specific angiogenesis inhibitor 1 transfection, whereas some level of cytotoxicity was assessed for endothelial cells. Immunohistochemical analysis of tumour samples confirmed a reduction in the microvessel density index in brain-specific angiogenesis inhibitor 1-overexpressing tumours. At messenger level, moderate changes could be detected, involving the down-regulation of vascular endothelial growth factor and collagenase-1 expression. Furthermore, brain-specific angiogenesis inhibitor 1 expression that was lost in a selection of human cancer cell lines could be restored by wild-type p53 adenoviral transfection. Brain-specific angiogenesis inhibitor 1 should be considered for gene therapy and development of efficient drugs based on endogenous antiangiogenic molecules

    Citrulline a More Suitable Substrate than Arginine to Restore NO Production and the Microcirculation during Endotoxemia

    Get PDF
    BACKGROUND: Impaired microcirculation during endotoxemia correlates with a disturbed arginine-nitric oxide (NO) metabolism and is associated with deteriorating organ function. Improving the organ perfusion in endotoxemia, as often seen in patients with severe infection or systemic inflammatory response syndrome (SIRS) is, therefore, an important therapeutic target. We hypothesized that supplementation of the arginine precursor citrulline rather than arginine would specifically increase eNOS-induced intracellular NO production and thereby improve the microcirculation during endotoxemia. METHODOLOGY/PRINCIPAL FINDINGS: To study the effects of L-Citrulline and L-Arginine supplementation on jejunal microcirculation, intracellular arginine availability and NO production in a non-lethal prolonged endotoxemia model in mice. C57/Bl6 mice received an 18 hrs intravenous infusion of endotoxin (LPS, 0.4 µg • g bodyweight(-1) • h(-1)), combined with either L-Citrulline (6.25 mg • h-1), L-Arginine (6.25 mg • h(-1)), or L-Alanine (isonitrogenous control; 12.5 mg • h(-1)) during the last 6 hrs. The control group received an 18 hrs sterile saline infusion combined with L-Alanine or L-Citrulline during the last 6 hrs. The microcirculation was evaluated at the end of the infusion period using sidestream dark-field imaging of jejunal villi. Plasma and jejunal tissue amino-acid concentrations were measured by HPLC, NO tissue concentrations by electron-spin resonance spectroscopy and NOS protein concentrations using Western blot. CONCLUSION/SIGNIFICANCE: L-Citrulline supplementation during endotoxemia positively influenced the intestinal microvascular perfusion compared to L-Arginine-supplemented and control endotoxemic mice. L-Citrulline supplementation increased plasma and tissue concentrations of arginine and citrulline, and restored intracellular NO production in the intestine. L-Arginine supplementation did not increase the intracellular arginine availability. Jejunal tissues in the L-Citrulline-supplemented group showed, compared to the endotoxemic and L-Arginine-supplemented endotoxemic group, an increase in degree of phosphorylation of eNOS (Ser 1177) and a decrease in iNOS protein level. In conclusion, L-Citrulline supplementation during endotoxemia and not L-Arginine reduced intestinal microcirculatory dysfunction and increased intracellular NO production, likely via increased intracellular citrulline and arginine availability

    Activating Transcription Factor 4 Confers a Multidrug Resistance Phenotype to Gastric Cancer Cells through Transactivation of SIRT1 Expression

    Get PDF
    BACKGROUND: Multidrug resistance (MDR) in gastric cancer remains a major challenge to clinical treatment. Activating transcription factor 4 (ATF4) is a stress response gene involved in homeostasis and cellular protection. However, the expression and function of ATF4 in gastric cancer MDR remains unknown. In this study, we investigate whether ATF4 play a role in gastric cancer MDR and its potential mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that ATF4 overexpression confered the MDR phenotype to gastric cancer cells, while knockdown of ATF4 in the MDR variants induced re-sensitization. In this study we also showed that the NAD(+)-dependent histone deacetylase SIRT1 was required for ATF4-induced MDR effect in gastric cancer cells. We demonstrated that ATF4 facilitated MDR in gastric cancer cells through direct binding to the SIRT1 promoter, resulting in SIRT1 up-regulation. Significantly, inhibition of SIRT1 by small interfering RNA (siRNA) or a specific inhibitor (EX-527) reintroduced therapeutic sensitivity. Also, an increased Bcl-2/Bax ratio and MDR1 expression level were found in ATF4-overexpressing cells. CONCLUSIONS/SIGNIFICANCE: We showed that ATF4 had a key role in the regulation of MDR in gastric cancer cells in response to chemotherapy and these findings suggest that targeting ATF4 could relieve therapeutic resistance in gastric cancer
    corecore