10,589 research outputs found

    Fine particle components and health--a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions.

    Get PDF
    Short-term exposure to fine particle mass (PM) has been associated with adverse health effects, but little is known about the relative toxicity of particle components. We conducted a systematic review to quantify the associations between particle components and daily mortality and hospital admissions. Medline, Embase and Web of Knowledge were searched for time series studies of sulphate (SO4(2-)), nitrate (NO3(-)), elemental and organic carbon (EC and OC), particle number concentrations (PNC) and metals indexed to October 2013. A multi-stage sifting process identified eligible studies and effect estimates for meta-analysis. SO4(2-), NO3(-), EC and OC were positively associated with increased all-cause, cardiovascular and respiratory mortality, with the strongest associations observed for carbon: 1.30% (95% CI: 0.17%, 2.43%) increase in all-cause mortality per 1 μg/m(3). For PNC, the majority of associations were positive with confidence intervals that overlapped 0%. For metals, there were insufficient estimates for meta-analysis. There are important gaps in our knowledge of the health effects associated with short-term exposure to particle components, and the literature also lacks sufficient geographical coverage and analyses of cause-specific outcomes. The available evidence suggests, however, that both EC and secondary inorganic aerosols are associated with adverse health effects

    Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis

    Get PDF
    Background Short-term exposure to outdoor fine particulate matter (particles with a median aerodynamic diameter <2.5 μm (PM2.5)) air pollution has been associated with adverse health effects. Existing literature reviews have been limited in size and scope. Methods We conducted a comprehensive, systematic review and meta-analysis of 110 peer-reviewed time series studies indexed in medical databases to May 2011 to assess the evidence for associations between PM2.5 and daily mortality and hospital admissions for a range of diseases and ages. We stratified our analyses by geographical region to determine the consistency of the evidence worldwide and investigated small study bias. Results Based upon 23 estimates for all-cause mortality, a 10 µg/m3 increment in PM2.5 was associated with a 1.04% (95% CI 0.52% to 1.56%) increase in the risk of death. Worldwide, there was substantial regional variation (0.25% to 2.08%). Associations for respiratory causes of death were larger than for cardiovascular causes, 1.51% (1.01% to 2.01%) vs 0.84% (0.41% to 1.28%). Positive associations with mortality for most other causes of death and for cardiovascular and respiratory hospital admissions were also observed. We found evidence for small study bias in single-city mortality studies and in multicity studies of cardiovascular disease. Conclusions The consistency of the evidence for adverse health effects of short-term exposure to PM2.5 across a range of important health outcomes and diseases supports policy measures to control PM2.5 concentrations. However, reasons for heterogeneity in effect estimates in different regions of the world require further investigation. Small study bias should also be considered in assessing and quantifying health risks from PM2.

    Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells

    Get PDF
    Copyright © 2013 The Authors. This article is made available through the Brunel Open Access Publishing Fund. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.Copyright © 2013 The Authors. It is well established that chromosomes exist in discrete territories (CTs) in interphase and are positioned in a cell-type specific probabilistic manner. The relative localisation of individual CTs within cell nuclei remains poorly understood, yet many cancers are associated with specific chromosome rearrangements and there is good evidence that relative territorial position influences their frequency of exchange. To examine this further, we characterised the complexity of radiation-induced chromosome exchanges in normal human bronchial epithelial (NHBE) cells by M-FISH analysis of PCC spreads and correlated the exchanges induced with their preferred interphase position, as determined by 1/2-colour 2D-FISH analysis, at the time of irradiation. We found that the frequency and complexity of aberrations induced were reduced in ellipsoid NHBE cells in comparison to previous observations in spherical cells, consistent with aberration complexity being dependent upon the number and proximity of damaged CTs, i.e. lesion proximity. To ask if particular chromosome neighbourhoods could be identified we analysed all radiation-induced pair-wise exchanges using SCHIP (statistics for chromosome interphase positioning) and found that exchanges between chromosomes (1;13), (9;17), (9;18), (12;18) and (16;21) all occurred more often than expected assuming randomness. All of these pairs were also found to be either sharing similar preferred positions in interphase and/or sharing neighbouring territory boundaries. We also analysed a human small cell lung cancer cell line, DMS53, by M-FISH observing the genome to be highly rearranged, yet possessing rearrangements also involving chromosomes (1;13) and (9;17). Our findings show evidence for the occurrence of non-random exchanges that may reflect the territorial organisation of chromosomes in interphase at time of damage and highlight the importance of cellular geometry for the induction of aberrations of varying complexity after exposure to both low and high-LET radiation.Department of Healt

    The Lattice of integer partitions and its infinite extension

    Get PDF
    In this paper, we use a simple discrete dynamical system to study the integers partitions and their lattice. The set of the reachable configurations equiped with the order induced by the transitions of the system is exactly the lattice of integer partitions equiped with the dominance ordering. We first explain how this lattice can be constructed, by showing its strong self-similarity property. Then, we define a natural extension of the system to infinity. Using a self-similar tree, we obtain an efficient coding of the obtained lattice. This approach gives an interesting recursive formula for the number of partitions of an integer, where no closed formula have ever been found. It also gives informations on special sets of partitions, such as length bounded partitions.Comment: To appear in LNCS special issue, proceedings of ORDAL'99. See http://www.liafa.jussieu.fr/~latap

    Studies of control strategies for building integrated solar energy system

    Get PDF
    Research and development work on Building Integrated Solar Energy Systems (BISES) has become an area of growing interest, not only in New Zealand (NZ) but worldwide. This interest has led to a significant growth in the use of solar energy to provide heating and electricity generation. This paper presents the theoretical and experimental results of a novel building integrated solar hot water system developed using commercial long run roofing materials. This work shows that it is possible to achieve effective integration that maintains the aesthetics of the building and also provides useful thermal energy. The results of a 6.73m2 glazed domestic hot water systems are presented. The key design parameters of the Building Integrated Thermal (BIT) system were identified and implemented in a TRansient SYstem Simulation (TRNSYS) model. Validation results comparing the simulation in TRNSYS and real experimentation show that experimental and simulation responses are close to each other. The coupling of TRNSYS and Matlab/Simulink shows the possibility to use Matlab/Simulink for developing appropriate control strategies for BIT roofing systems. Preliminary Fuzzy Logic (FL) intelligent controller was implemented in a Fuzzy Integrated System (FIS) toolbox in a Matlab/Simulink model and linked into TRNSYS model. Further work is needed to identify and design advanced predictive control strategies for the Building Integrated Photovoltaic Thermal (BIPVT) solar system and determine how the performance can be optimized

    Development of a Smartphone Application to Enable Remote Monitoring in the Outpatient Management of Cirrhotic Ascites

    Get PDF
    Patients who develop hepatic decompensation with ascites have a poor prognosis and often experience other complications including spontaneous bacterial peritonitis, hepatic encephalopathy and variceal bleeding. We hypothesised that smartphone (SP)-enabled remote monitoring of patients with ascites may enable early detection of infection and acute decompensation, facilitate timely intervention and improve patient outcomes. Aim:&nbsp; We aimed to design, develop and implement a remote monitoring system (RMS) for outpatients with cirrhotic ascites. Method: We undertook surveys with patients and hepatologists to quantify the demand for a RMS and identify issues regarding implementation. A smartphone and a web-based application were developed as a RMS. Patients used the RMS in a 6-week prospective non-randomised trial.&nbsp; Results: We surveyed 27 patients (mean age 56 years, 18 (67%) were male, 16 (59%) had Childs Pugh B cirrhosis, and 20 (74%) had a history of alcoholic liver disease) and 5 hepatologists. There were 19 patients (70%) who reported that they would use a RMS. The RMS was used by 10 patients for a mean 53.8days (11-70), who entered 20.6 (0-71) updates. A total of 18 automated alerts occurred. 22% of automated alerts resulted in clinically significant changes to management, such as inpatient admission n=1 (6%), early outpatient appointment n=1 (6%) and reinforced adherence n=2 (11%). Conclusion:&nbsp;&nbsp; We have successfully designed an internet-enabled RMS for outpatients with cirrhotic ascites that could be used as an adjunct to existing outpatient services. Future studies will optimise the alert thresholds, assess long-term patient adoption and quantify clinical impact

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004

    The connection between superconducting phase correlations and spin excitations in YBa2_2Cu3_3O6.6_{6.6}: A magnetic field study

    Full text link
    One of the most striking universal properties of the high-transition-temperature (high-TcT_c) superconductors is that they are all derived from the hole-doping of their insulating antiferromagnetic (AF) parent compounds. From the outset, the intimate relationship between magnetism and superconductivity in these copper-oxides has intrigued researchers. Evidence for this link comes from neutron scattering experiments that show the unambiguous presence of short-range AF correlations (excitations) in cuprate superconductors. Even so, the role of such excitations in the pairing mechanism and superconductivity is still a subject of controversy. For YBa2_2Cu3_3O6+x_{6+x}, where xx controls the hole-doping level, the most prominent feature in the magnetic excitations spectra is the ``resonance''. Here we show that for underdoped YBa2_2Cu3_3O6.6_{6.6}, where xx and TcT_c are below the optimal values, modest magnetic fields suppress the resonance significantly, much more so for fields approximately perpendicular rather than parallel to the CuO2_2 planes. Our results indicate that the resonance measures pairing and phase coherence, suggesting that magnetism plays an important role in the superconductivity of cuprates. The persistence of a field effect above TcT_c favors mechanisms with preformed pairs in the normal state of underdoped cuprates.Comment: 12 pages, 4 figures, Nature (in press

    The spirit of sport: the case for criminalisation of doping in the UK

    Get PDF
    This article examines public perceptions of doping in sport, critically evaluates the effectiveness of current anti-doping sanctions and proposes the criminalisation of doping in sport in the UK as part of a growing global movement towards such criminalisation at national level. Criminalising doping is advanced on two main grounds: as a stigmatic deterrent and as a form of retributive punishment enforced through the criminal justice system. The ‘spirit of sport’ defined by the World Anti-Doping Agency (WADA) as being based on the values of ethics, health and fair-play is identified as being undermined by the ineffectiveness of existing anti-doping policy in the current climate of doping revelations, and is assessed as relevant to public perceptions and the future of sport as a whole. The harm-reductionist approach permitting the use of certain performance enhancing drugs (PEDs) is considered as an alternative to anti-doping, taking into account athlete psychology, the problems encountered in containing doping in sport through anti-doping measures and the effect of these difficulties on the ‘spirit of sport’. This approach is dismissed in favour of criminalising doping in sport based on the offence of fraud. It will be argued that the criminalisation of doping could act as a greater deterrent than existing sanctions imposed by International Federations, and, when used in conjunction with those sanctions, will raise the overall ‘price’ of doping. The revelations of corruption within the existing system of self-governance within sport have contributed to a disbelieving public and it will be argued that the criminalisation of doping in sport could assist in satisfying the public that justice is being done and in turn achieve greater belief in the truth of athletic performances
    corecore