27 research outputs found

    Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for <it>Plasmodium falciparum </it>resistance against CQ and sulphadoxine/pyrimethamine (SP).</p> <p>Methods</p> <p>Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for <it>P. falciparum </it>chloroquine resistance transporter gene (<it>pfcrt</it>)-76 polymorphisms, mutation <it>pfcrt-</it>S163R and the antifolate resistance-associated mutations dihydrofolate reductase (<it>dhfr</it>)-C59R and dihydropteroate synthase (<it>dhps</it>)-K540E. Direct DNA sequencing of the <it>pfcrt </it>gene from three representative field samples was carried out after DNA amplification of the 13 exons of the <it>pfcrt </it>gene.</p> <p>Results</p> <p>Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant <it>pfcrt </it>T76 was 98% in 112 amplified pre-treatment samples. The presence of <it>pfcrt </it>T76 was poorly predictive of <it>in vivo </it>CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of <it>dhfr </it>Arg-59 mutation in 99 amplified samples was 5%, while the <it>dhps </it>Glu-540 was not detected in any of 119 amplified samples. Sequencing the <it>pfcrt </it>gene confirmed that Yemeni CQ resistant <it>P. falciparum </it>carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371.</p> <p>Conclusion</p> <p>This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR <it>P. falciparum </it>parasites from Yemen. Mutant <it>pfcrt</it>T76 is highly prevalent but it is a poor predictor of treatment failure in the study population. The prevalence of mutation <it>dhfr</it>Arg59 is suggestive of emerging resistance to SP, which is currently a component of the recommended combination treatment of falciparum malaria in Yemen. More studies on these markers are recommended for surveillance of resistance in the study area.</p

    Identification of pyrimethamine- and chloroquine-resistant Plasmodium falciparum in Africa between 1984 and 1998: genotyping of archive blood samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the geographical distribution of drug resistance of <it>Plasmodium falciparum </it>is important for the effective treatment of malaria. Drug resistance has previously been inferred mainly from records of clinical resistance. However, clinical resistance is not always consistent with the parasite's genetic resistance. Thus, molecular identification of the parasite's drug resistance is required. In Africa, clinical resistance to pyrimethamine (Pyr) and chloroquine (CQ) was evident before 1980 but few studies investigating the genetic resistance to these drugs were conducted before the late 1990s. In this study, genotyping of genes involved in resistance to Pyr and CQ was performed using archive blood samples from Africa between 1984 and 1998.</p> <p>Methods</p> <p>Parasite DNA was extracted from <it>P. falciparum</it>-infected blood smears collected from travellers returning to Japan from Africa between 1984 and 1998. Genotypes of the dihydrofolate reductase gene (<it>dhfr</it>) and CQ-resistance transporter gene (<it>pfcrt) </it>were determined by polymerase chain reaction amplification and sequencing.</p> <p>Results</p> <p>Genotyping of <it>dhfr </it>and <it>pfcrt </it>was successful in 59 and 80 samples, respectively. One wild-type and seven mutant <it>dhfr </it>genotypes were identified. Three <it>dhfr </it>genotypes lacking the S108N mutation (NRSI, ICSI, IRSI; amino acids at positions 51, 59, 108, and 164 with mutations underlined) were highly prevalent before 1994 but reduced after 1995, accompanied by an increase in genotypes with the S108N mutation. The <it>dhfr </it>IRNI genotype was first identified in Nigeria in 1991 in the present samples, and its frequency gradually increased. However, two double mutants (ICNI and NRNI), the latter of which was exclusively found in West Africa, were more frequent than the IRNI genotype. Only two <it>pfcrt </it>genotypes were found, the wild-type and a Southeast Asian type (CVIET; amino acids at positions 72-76 with mutations underlined). The CVIET genotype was already present as early as 1984 in Tanzania and Nigeria, and appeared throughout Africa between 1984 and 1998.</p> <p>Conclusions</p> <p>This study is the first to report the molecular identification of Pyr- and CQ-resistant genotypes of <it>P. falciparum </it>in Africa before 1990. Genotyping of <it>dhfr </it>and <it>pfcrt </it>using archive samples has revealed new aspects of the evolutionary history of Pyr- and CQ-resistant parasites in Africa.</p

    Neurotropic virus infections as the cause of immediate and delayed neuropathology

    Get PDF
    corecore