954 research outputs found
Highly selective detection of Hg2+ and MeHgI by di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer
©2016 the Partner Organisations. Solvothermal reaction of Zn(NO3)2·6H2O with di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine (ppvppa) and 1,4-naphthalenedicarboxylic acid (1,4-H2NDC) in H2O and MeCN at 150 °C yielded a two-dimensional (2D) coordination Zn(ii) polymer [Zn(ppvppa)(1,4-NDC)]n (1). Compound 1 was characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, single-crystal X-ray diffraction and thermogravimetric analysis. Compound 1 consists of dimeric [Zn2(ppvppa)2] units linked by 1,4-NDC bridges to generate a 2D honeycomb network. Either compound 1 or ppvppa alone can detect Hg2+ or MeHgI selectively and with good sensitivity. Upon addition of Hg2+ ions to a MeCN solution of ppvppa, marked changes in the UV-vis and fluorescence spectra are observed, associated with colour changes, which are easily identified by the naked eye. The pyridinyl rings of ppvppa are coordinated to the Hg2+ ion. This motif in the presence of NO3- ions forms a binuclear complex [Hg2(ppvppa)2(NO3)4] (2), which has been characterized as the solvate [Hg2(ppvppa)2(NO3)4]·H2O·4MeCN (2·H2O·4MeCN) by single-crystal X-ray diffraction studies. In aqueous solution, compound 1 emits pale orange light at ambient temperature and the addition of Hg2+ or MeHgI induces an change of fluorescence color from pale orange to blue. Compound 1 is a promising candidate as a sensitive naked-eye indicator for Hg2+ or MeHgI in water under a UV lamp. Introduction to the international collaboration Prof. Lang and Prof. Brammer met with each other in Nanjing, China when Prof. Brammer taught lectures at Nanjing Tech University last November. Prof. Lang's research involves metal sulfide cluster chemistry, design and development of new coordination complex-based catalysts, bioinorganic chemistry related to mimicking metal sites of enzymes and proteins, and so on. Prof. Brammer's research interest covers supramolecular chemistry and crystal engineering, in particular host-guest chemistry and catalysis in metal-organic frameworks, reactions in molecular solids and fundamentals of intermolecular interactions. Both professors recognised their many mutual research interests and decided to initiate an international collaborative project in the area of coordination polymers. Both will visit the partner's lab in China and UK in the near future and expand this project to a higher level
Linearization and Decomposition Methods for Large Scale Stochastic Inventory Routing Problem with Service Level Constraints
A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, for a depot to determine delivery volumes to its customers in each period, and vehicle routes to distribute the delivery volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer’s delivery in each period can be split and satisfied by multiple vehicles if necessary. The objective of the problem is to minimize the total inventory and transportation cost while some constraints are given to satisfy other criteria, such as the service level to limit the stockout probability at each customer and the service level to limit the overfilling probability of the warehouse of each customer. In order to tackle the SIRPSD with notorious computational complexity, we propose for it an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model can be found by the approach, and then be used to construct a near optimal solution of the SIRPSD. Numerical examples show that, for an instance of the problem with 200 customers and 5 periods that contains about 400 thousands decision variables where half of them are integer, our approach can obtain high quality near optimal solutions with a reasonable computational time on an ordinary PC
Bi-local baryon interpolating fields with two flavours
We construct bi-local interpolating field operators for baryons consisting of
three quarks with two flavors, assuming good isospin symmetry. We use the
restrictions following from the Pauli principle to derive relations/identities
among the baryon operators with identical quantum numbers. Such relations that
follow from the combined spatial, Dirac, color, and isospin Fierz
transformations may be called the (total/complete) Fierz identities. These
relations reduce the number of independent baryon operators with any given spin
and isospin. We also study the Abelian and non-Abelian chiral transformation
properties of these fields and place them into baryon chiral multiplets. Thus
we derive the independent baryon interpolating fields with given values of spin
(Lorentz group representation), chiral symmetry ( group
representation) and isospin appropriate for the first angular excited states of
the nucleon.Comment: 15 pages, 4 tables, accepted by EPJ
Two charged strangeonium-like structures observable in the process
Via the Initial Single Pion Emission (ISPE) mechanism, we study the
invariant mass spectrum distribution of . Our calculation indicates there exist a sharp peak
structure () close to the threshold and a broad
structure () near the threshold. In addition, we
also investigate the process due to
the ISPE mechanism, where a sharp peak around the threshold
appears in the invariant mass spectrum distribution. We
suggest to carry out the search for these charged strangeonium-like structures
in future experiment, especially Belle II, Super-B and BESIII.Comment: 7 pages, 5 figures. Accepted by Eur. Phys. J.
Chiral Baryon Fields in the QCD Sum Rule
We study the structure of local baryon fields using the method of QCD sum
rule. We only consider the single baryon fields and calculate their operator
product expansions. We find that the octet baryon fields belonging to the
chiral representations [(3,3*)+(3*,3)] and [(8,1)+(1,8)] and the decuplet
baryon fields belonging to the chiral representations [(3,6)+(6,3)] lead to the
baryon masses which are consistent with the experimental data of ground baryon
masses. We also calculate their decay constants, check our normalizations for
baryon fields in PRD81:054002(2010) and find that they are well-defined.Comment: 12 pages, 6 figure, 1 table, accepted by EPJ
Observation of Two New N* Peaks in J/psi -> and Decays
The system in decays of is limited to be
isospin 1/2 by isospin conservation. This provides a big advantage in studying
compared with and experiments which mix
isospin 1/2 and 3/2 for the system. Using 58 million decays
collected with the Beijing Electron Positron Collider, more than 100 thousand
events are obtained. Besides two well known
peaks at 1500 MeV and 1670 MeV, there are two new, clear peaks in
the invariant mass spectrum around 1360 MeV and 2030 MeV. They are the
first direct observation of the peak and a long-sought "missing"
peak above 2 GeV in the invariant mass spectrum. A simple
Breit-Wigner fit gives the mass and width for the peak as MeV and MeV, and for the new peak above 2 GeV
as MeV and MeV, respectively
Temporal build-up of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions
The temporal evolution of electromagnetically induced transparency (EIT) and
absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate
two-level atomic transition is studied for light intensities below saturation.
Analytical expression for the transient absorption spectra are given for simple
model systems and a model for the calculation of the time dependent response of
realistic atomic transitions, where the Zeeman degeneracy is fully accounted
for, is presented. EIT and EIA resonances have a similar (opposite sign) time
dependent lineshape, however, the EIA evolution is slower and thus narrower
lines are observed for long interaction time. Qualitative agreement with the
theoretical predictions is obtained for the transient probe absorption on the
line in an atomic beam experiment.Comment: 10 pages, 9 figures. Submitted to Phys. Rev.
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
Baryon Tri-local Interpolating Fields
We systematically investigate tri-local (non-local) three-quark baryon fields
with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin
(flavor) group representations. We note that they can also be called as
"nucleon wave functions" due to this full non-locality. We study their chiral
transformation properties and find all the possible chiral multiplets
consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling
constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral
representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta
fields. Moreover, all the nucleon fields belonging to this representation have
|g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
- …
