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Abstract:  

A stochastic inventory routing problem (SIRP) is typically the combination of stochastic 

inventory control problems and NP-hard vehicle routing problems, for a depot to determine 

delivery volumes to its customers in each period, and vehicle routes to distribute the delivery 

volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) 

where a customer’s delivery in each period can be split and satisfied by multiple vehicles if 

necessary. The objective of the problem is to minimize the total inventory and transportation cost 

while some constraints are given to satisfy other criteria, such as the service level to limit the 

stockout probability at each customer and the service level to limit the overfilling probability of 

the warehouse of each customer. In order to tackle the SIRPSD with notorious computational 

complexity, we propose for it an approximate model, which significantly reduces the number of 

decision variables compared to its corresponding exact model. We develop a hybrid approach that 

combines the linearization of nonlinear constraints, the decomposition of the model into 

sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A 

near optimal solution of the model can be found by the approach, and then be used to construct a 

near optimal solution of the SIRPSD. Numerical examples show that, for an instance of the 

problem with 200 customers and 5 periods that contains about 400 thousands decision variables 

where half of them are integer, our approach can obtain high quality near optimal solutions with a 

reasonable computational time on an ordinary PC. 
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problem, Lagrangian relaxation 

1. Introduction 

An inventory routing problem (IRP) is frequently found in a vendor managed inventory (VMI) 

system with one central vendor (depot) and multiple geographically dispersed customers. The depot 

operates vehicles with limited capacity for distributing products to its customers. The IRP aims to 

determine the delivery volume for every customer and a set of feasible vehicle routes for the 

delivery volumes in each period so that a system wide total inventory and transportation cost is 

minimized. Such problems are common in VMI systems that have been adopted in many firms like 

P&G, Dell, HP, Barilla, Wal-Mart (Yu et al., 2009a; Yu et al., 2009b) and Air Products for gas 

distribution (Adelman, 2004; Bell et al., 1983). 

 

This paper focuses on a multiple-period stochastic inventory routing problem with split delivery 

(SIRPSD) where the depot has a fleet of homogenous capacitated vehicles, and customers’ 

demands are stochastic in each time period (e.g. every day). In such a stochastic setting, except for 

the minimization of the total inventory and transportation cost, some other criteria, due to the 

stochastic demands, have to be satisfied, such as the service level to limit the stockout probability 

at each customer and the service level to limit the overfilling probability of the warehouse of each 

customer in each period. Moreover, split delivery, which allows the delivery volume to satisfy a 

customer’s demand in each period to be split and served by multiple vehicles, is taken into 

consideration in this problem because it is common in practice.  

SIRP is a class of notoriously difficult problems and related literature can be classified in three 

categories: those who study a single period problem, those who study an infinite-period problem, 

and those who study a finite multi-period problem. A single period problem is firstly studied in 

Federgruen and Zipkin (1984) which considers the corresponding inventory control problem as a 

newsvendor problem and the corresponding routing problem as a TSP. Dror and Ball (1987) 

develop a heuristic technique to reduce a long-run average problem to a single period problem. The 

infinite-period SIRP is mainly stemmed from Kleywegt et al.(2002; 2004) and Adelman (2004). 

They formulate the problem as a Markov decision problem (MDP) over an infinite horizon where 

dynamic programming can be applied to solve the problem. To make the MDP solvable, they 
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assume that the state of the system can be observed at the beginning of each period so that an action 

can be taken, and that customer demands are observed after any action has been made. The state of 

the system is described through the inventory levels of all the customers. They aim to determine a 

policy for the MDP to minimize the expected total inventory and transportation costs plus possible 

revenue gained for each delivery over an infinite horizon. Further extensions of those researches can 

be found in Hvattum et al.(2009), Lejeune and Ruszczynsk (2007).  

For multi-period SIRP, Trudeau and Dror (1992) and Dror and Trudeau (1996) consider stochastic 

demands over a rolling horizon. Both papers solve a slightly different model with a specific 

application to the distribution of oil and gas. In these models, a product has to be delivered from one 

depot to many customers whose demand is different in each period. Trudeau and Dror (1992) 

develop heuristics to solve their problems by minimizing the long-run average transportation costs, 

and Dror and Trudeau  (1996) focus on maximizing operational efficiency (average number of 

units delivered in one hour of operation) and minimizing the average number of stockout in each 

period. Similar literature can be found in Jaillet et al.(2002) and Schwarz et al  (2006). The main 

differences between the above cited papers and our paper lie in:  

1) We consider split delivery, that is, one customer’s demand can be satisfied by multiple vehicles. 

Although split delivery is extensively studied in VRP literature, it is rarely considered in inventory 

routing problems, especially in stochastic inventory routing problems. As demonstrated by Dror et 

al. (1994) and Dror and Trudeau (1990), considering split delivery (SDVRP) in a VRP makes it 

much more difficult to solve. Exact methods can only deal with small instances of the problem with 

few customers, such as the shortest path approach proposed by Lee et al. (2006) solves only an 

instance with 7 customers. If a large number of customers are considered, their methods can not 

guarantee the optimality of solutions, like a tabu search heuristic proposed by Ho and Haugland 

(2004). For an algorithm that can give the gap between the lower and upper bounds of the optimal 

value of the problem to evaluate the performance of the algorithm, Belenguer et al. (2000) only 

consider instances with up to 48 customers with reported gaps between 0% and 12%. As the 

consideration of split delivery in SIRP significantly increases its complexity, it is a challenge to 

develop an efficient and effective algorithm to solve SIRPSD. 

2) We consider the service levels of customer demands and warehouses, which are rarely treated in 

SIRP related literature.  
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3) We consider stochastic demands of any distribution with the help of model simplification and a 

nonlinear objective function. The demands of each customer in multiple periods can be correlated.  

This paper is a stochastic version of our previous work Yu et al. (2008) on a deterministic IRP, but 

they have distinct differences in their models and solution approaches: 1) the objective function is 

nonlinear in this paper but linear in Yu et al. (2008); 2) the constraints of the models are different; 

some service level related constraints are considered in this paper and they are also nonlinear. 

Therefore, new approaches have to be developed to deal with those stochastic and nonlinear 

components. We borrow some ideas about how to construct a near optimal solution of the SIRPSD 

from its model’s solution from our previous paper, but the construction approach has to be adapted 

to the new features of the SIRPSD and its model. 

The contributions of the paper include: 1) study a new SIRPSD where the service levels of 

customers’ demands and warehouses are considered, 2) propose a hybrid approach to find 

near-optimal solutions of the SIRPSD for large instances (i.e., with 200 customers). In order to 

efficiently solve such kind of large instances of the problem, we propose the following approaches:  

Firstly, we propose an approximate stochastic IRP model instead of an exact stochastic model. The 

approximate model allows us not to dedicate decision variables to individual vehicles since the 

vehicles considered are homogeneous. This can significantly reduce the number of decision 

variables. For example, if the vehicle fleet size is 20, our modeling only requires 1/20 vehicle 

related decision variables compared with an exact model where decision variables are dedicated to 

individual vehicles. Although the solution of such an approximate model might not be a feasible 

solution of the studied SIRPSD, the infeasibility can be effectively repaired without affecting 

solution quality. Moreover the optimal solution of the approximate model provides a lower bound of 

the optimal cost of our studied SIRPSD. 

Secondly, we transform the approximate stochastic model into a simplified deterministic model 

which is easier to solve. Meanwhile some constraints are eliminated and the feasible domains of 

some decision variables are reduced without losing optimal solutions (see subsection 2.2). 

Thirdly, we develop a Lagrangian relaxation approach to decompose the model into sub-models,  

which are an inventory problem and a vehicle routing problem, respectively. The inventory 

problem is nonlinear and is solved by a partial linearization approach. The routing problem is 

further decomposed into many smaller subproblems which can be quickly solved.   
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Finally, assignment problems are introduced to construct feasible solutions of the SIRPSD. Some 

local search improvements are also proposed to improve the quality of the found feasible solutions 

of the SIRPSD. 

Besides, our approach can provide a tight lower bound of the optimal cost of the studied SIRPSD 

for evaluating the quality of a feasible solution of the SIRPSD; a lower bound of the SIRPSD is 

provided by the optimal solution of approximate model. The lower bound of the approximate model 

can be obtained from the optimal Lagrangian dual value provided by the Lagrangian relaxation 

approach. Therefore the dual value is a lower bound of the SIRPSD. The quality of the feasible 

solution of the SIRPSD can therefore be evaluated by the gap between the cost of the found solution 

of the SIRPSD and the dual value. The smaller the gap is, the better the solution is. 

The rest of this paper is organized as follows: In next section, the approximate model is proposed 

and simplified. The near optimal solution of the approximate model is found in Section 3, based 

on which the near optimal solution of the studied SIRPSD is found in Section 4. In Section 5, a 

special case of customer demand probability distribution is analyzed and the performance of our 

proposed approach is evaluated. Section 7 concludes the paper. 

2. Approximate generic model and it simplification 

The studied multiple-period SIRPSD consists of multiple customers, a central depot, and a fleet of 

vehicles, where  

(1) Each customer’s demand is stochastic in each period, and the customers require the depot to 

satisfy their demands with a certain service level by limiting the possibility of stockout within 

a given value. The stockout of one period can not be compensated by that of its immediate 

next period.  

(2) The depot is responsible for distributing a product to satisfy the requirements of its customers 

on demand and service levels by a fleet of homogeneous and capacitated vehicles. Note that 

assuming homogeneous vehicles is common in literature (Fumero and Vercellis, 1999; 
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Hvattum et al., 2009; Yu et al., 2008). 

(3) A multi-period horizon is considered. Periodically, the depot has to make a planning for the 

next time horizon about when and how much every customer should be replenished. Because 

the demands of each customer are stochastic but its delivery volumes over the time horizon 

have to be determined at the beginning of the time horizon, the customer’s warehouse may be 

overfilled in the next period if the demand in the current period is low but the delivery volume 

for the next period is high. We therefore have to consider the service levels of warehouses in 

order to model the limit of the overfilling possibility.  

(4) Split delivery is allowed. In practice, if a customer’s demand is large, the delivery volume of 

the customer is most likely to be served by multiple vehicles.  

(5) The objective is to minimize the total inventory and transportation cost over a given time 

horizon subject to given service level constraints. The inventory cost depends on the inventory 

level of each customer at the end of each period. The transportation cost includes not only fixed 

usage cost which is related to vehicle insurance, depreciation, and drivers’ rewards, but also a 

variable cost, which depends both on transported quantity and traveled distance. This 

transportation cost structure, adopted by Fumero and Vercellis (1999), can not only model 

purely distance proportional cost components (such as fuel costs) in classical VRP but also 

model the transportation cost in the third party logistics where the transportation cost charged is 

usually proportional to the shipped volume.  

The related notations are given as follows. 

Indices  

, 0,1,...,i j N=  Index of customer or depot, where , 1,...,i j N=  are customer indexes, and 

0 is the depot index, 
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t=1,…, T  Period index, 

Parameters   

C  Vehicle capacity in volume, 

ijc  Variable shipping cost per unit of product along arc ( , )i j  where  ijc = jic  

and triangle inequality holds ( ijc + jkc ≥ ikc ), 

0
b
ic  traveling cost of an empty vehicle from customer i  back directly to depot,  

tf  Fixed vehicle cost per tour in period t, 

ith  Holding cost per unit product for customer i  in period t , 

0iI  Initial inventory level at beginning of period 1, 

itI  Inventory level of customer i  at the end of period t , 

itI + =max(0, itI ) On-hand inventory of customer i  at the end of period t , 

iV  The inventory capacity for customer i , 

itα  
Service level for customer i  in period t  (probability in which customer i’s 

demand is satisfied in period t.), 

itβ  
The service level of customer i ’s warehouse in period t (probability in which 

customer i ’s warehouse is not overfilled in period t), 

itζ  Stochastic demand for customer i  in period t , 

,(1, )i tζ  
1

t
iss

ζ
=∑   cumulative stochastic demand from period 1 to t , 

,(1, )i tF (.) Accumulative probability distribution function of stochastic demand ,(1, )i tζ , 

Variables   

itd  Delivery volume to customer i  in period t , 

ijtq  Demand quantity transported on directed arc ( , )i j  in period t , 

ijtx  The number of the times that customer j  is visited directly after customer i  

in period t . 
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2.1 Approximate model 

The approximate model for the SIRPSD (denoted by P) can therefore be formulated as: 

Model P: 

 
1 1

min ( )
T N

it it
t i

Z E h I +

= =

= ∑ ∑
1 0 0

T N N

ij ijt
t j i

j i

c q
= = =

≠

+∑∑∑ +
1 1

T N

t i0t
t i

f x
= =
∑∑ + 0

1 1

T N
b
i i0t

t i
c x

= =
∑∑   (1) 

Subject to 

 ,0
1 1

t t

it i is is
s s

I I d ζ
= =

= + −∑ ∑   1,...,i N= , 1,...,t T=  (2) 

 Prob( 0)it itI α≥ ≥   1, 2,...,i N= , 1,...,t T=  (3) 

 , 1Prob( )i t it i itI d V β− + ≤ ≥   1, 2,...,i N= , 2,....,t T=  (4) 

 ,0 1i i iI d V+ ≤    1,...,i N=  (5) 

 
0 0

N N

ijt jit
j j
j i j i

x x
= =
≠ ≠

=∑ ∑   0,...,i N= , 1,...,t T=  (6) 

 
0 0

N N

jit ijt it
j j
j i j i

q q d
= =
≠ ≠

− =∑ ∑   1,...,i N= , 1,...,t T=  (7) 

 0
1 1

N N

it it
i i

q d
= =

=∑ ∑   1,...,t T=  (8) 

 ijt ijtq C x≤ ⋅   0,...,i N= , 1,...,j N= i j≠ , 1,...,t T=  (9) 

 0itd ≥  1,...,i N= , 0ijtq ≥  0,...,i N=  1,...,j N=  j i≠  1,...,t T=  (10) 

 0ijtx ≥  and integer  , 0,...,i j N= , i j≠ , 1,...,t T= . (11) 

Equation (1) gives the total cost including both expected inventory cost for all customers 

(
1 1

( )
T N

it it
t i

E h I +

= =
∑ ∑ ), variable transportation cost (

1 0 0

T N N

ij ijt
t j i

j i

c q
= = =

≠

∑∑∑ ), fixed transportation cost 

(
1 1

T N

t i0t
t i

f x
= =
∑∑ ) and transportation cost with empty vehicles ( 0

1 1

T N
b
i i0t

t i
c x

= =
∑∑ ). It is a stochastic 

version of the cost structure in Yu et al. (2008) and Fumero and Vercellis (1999). Constraints (2) are 

the inventory balance constraints for individual customers. Constraints (3) ensure that the 
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probability for customer i ’s demand satisfied in period t is no less than itα  for  period t = 

1,…,T  , which represents the service levels of the depot to satisfy customer demand in each period. 

Constraints (4) describe the service levels related to the capacities of the customers’ warehouses  

and guarantee that the probability of customer i ’s warehouse capacity being able to accommodate 

its maximum inventory level is no less than itβ  at period 2,..,t T= . Constraints (5) ensure that 

every customer’s warehouse inventory capacity should be no less than its maximum inventory level 

in period 1. Constraints (6) ensure that the number of vehicles leaving from a customer or the depot 

is equal to that of arriving vehicles. Constraints (7) are the product flow conservation equations, 

ensuring flow balance at each customer and eliminating possible subtours. Constraints (8) assure the 

total volume shipped from the depot equals the total delivery volume of all the customers in each 

period. Constraints (9) model the vehicle capacity and logical relationship between ijtq  and ijtx . 

Model P defines some necessary conditions of a feasible solution of the SIRPSD and therefore its 

optimal solution provides a lower bound of the optimal cost of the SIRPSD. However, in the 

decision variables ijtq  and ijtx , no subscripts are dedicated to individual vehicles, and feasible 

ijtq  and ijtx  of model P may be infeasible for the SIRPSD. ijtq  and ijtx  have to be split and 

assigned to individual vehicles in order to make them feasible for the studied SIRPSD. In the 

following, we firstly simplify the model (see subsection 2.2), and find its near optimal solutions (see 

section 3). How to construct a near optimal solution of the studied SIRPSD will be given later in 

Section 4. 

2.2 Model Simplification 

Model P can be simplified from three aspects: 1) transforming the stochastic terms in Model P (i.e., 

Equations (1), (2), (3) and (4)) into deterministic ones, 2) adding some valid constraints to reduce 

the feasible domains of the decision variables, 3) simplifying some decision variables. 

Transformation of the stochastic terms. The stochastic terms are in (1), (2), (3) and (4). For the 

objective function (1), by substituting Equation (2) into the objective function (1), 
1

( )
N

it it
i

E h I +

=
∑  

can be reformulated as 



2010-1-23 

 10

,0
1 ,0 ,(1, )0

1 1 1
( ) ( ) ( )

t

i is
s

N N tI d

it it it i is i t
i i s

h E I h I d x dF x=

++

= = =

∑= + −∑ ∑ ∑∫ . 

For Constraints (3), correspondingly, substituting (2) into Constraints (3), we have 

Prob( 0)itI ≥ ,0
1 1

Prob( )
t t

i is is
s s

I d ζ
= =

= + ≥∑ ∑  
,0

1 ,(1, )0
( )

t

i is
s

I d

i tdF x=

+∑= ∫  ,(1, ) ,0
1

( )
t

i t i is
s

F I d
=

= +∑  

,(1, ) (0)i tF−  = ,(1, ) ,0
1

( )
t

i t i is
s

F I d
=

+∑  because ,(1, ) (0)i tF =0 for all practical purposes. Consequently, 

Constraint (3) can be reformulated as ,(1, ) ,0
1

( )
t

i t i is
s

F I d
=

+∑ itα≥ , or equivalently as  

 1
,(1, ) ,0

1
( )

t

is i t it i
s

d F Iα−

=

≥ −∑    1,2,...,i N= , 1,...,t T= . (3’) 

For Constraints (4), substituting (2) into Constraints (4), , 1Prob( )i t it iI d V− + ≤ =  

Prob(
1 1

,0
1 1

t t

i is is
s s

I d ζ
− −

= =

+ −∑ ∑ itd+  iV≤ ) = Prob( ,0
1

t

i is
s

I d
=

+∑ - iV ≤
1

1

t

is
s
ζ

−

=
∑ )= 

,0
1

,(1, 1) ( )t

i is i
s

i tI d V
dF x

=

+∞

−+ −∑∫  

=1- ,(1, 1) ,0
1

( )
t

i t i is i
s

F I d V−
=

+ −∑ . Thus Constraints (4) can be formulated as ,(1, 1) ,0
1

( )
t

i t i is i
s

F I d V−
=

+ −∑  

≤1- itβ , or equivalently as: 

 1
,(1, 1) ,0

1
(1 )

t

is i i t it i
s

d V F Iβ−
−

=

≤ + − −∑     1,2,...,i N=  2,....,t T= . (4’) 

As the result of the above transformation, constraints (2) are removed simultaneously. 

Once 1
,(1, 1) ( )i tF −

− ⋅  is known, constraints (3’) and (4’) become linear now. 

Addition of valid constraints. Without proof, the optimal solution of Model P must satisfy 

Constraints (12) below: 

 0 0i tq =   1,...,i N=  1,...,t T=  (12) 

The constraints imply that each vehicle must be empty when it returns to the depot. 

Simplification of decision variables. With Theorem 1 below, ijtx  for , 1,...,i j N=  as integer 

can be simplified as binary variables, {0,1}ijtx ∈ . 

Theorem 1. If model P is feasible, and ijc  , 1,...i j N=  satisfy the triangle inequality, then the 

model has an optimal solution where no two routes with the same direction have more than one 
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common customer, i.e., {0,1}ijtx ∈  for , 1,...i j N= . 

Here Theorem 1, taken from Yu et al. (2008), is given directly without proof. The theorem 1 is 

proved by Dror and Trudeau (1990) in case of VRP with split delivery.  

Therefore Constraints (11) can be replaced by 

 {0,1}ijtx ∈  j i≠ , 0 0,i t jtx x  integer , 1,...,i j N=  (11’) 

According to the above analysis, Model P can be simplified as the following equivalent model, 

(denoted by P’). 

Model P’: 

,0
1 ,0 ,(1, )0

1 1 1

min ( ) ( )
t

i is
s

T N tI d

it i is i t
t i s

J h I d x dF x=

+

= = =

∑= + −∑∑ ∑∫
1 1 0

T N N

ij ijt
t j i

j i

c q
= = =

≠

+∑∑∑ +
1 1

T N

t i0t
t i

f x
= =
∑∑  

    + 0
1 1

T N
b
i i0t

t i
c x

= =
∑∑  (1’) 

Subject to Constraints (5)-(10), (3’), (4’), (11’), and (12).  

3. Solution methodology of Model P’ 

Model P’ is obviously NP-hard as its simplified single period problem without considering 

inventory is SDVRP that is NP-hard. This motivates us to seek for approximate approaches to 

solve the problem and Lagrangian relaxation (LR) approach is selected since it can decompose our 

model into easily solvable sub-problems. 

In this section the Lagrangian relaxation (LR) approach to find a near optimal solution of model 

P’ will be presented. The solution will then be used to construct a feasible near optimal solution of 

the SIRPSD using a heuristic approach. The optimal dual value obtained by the Lagrangian 

relaxation approach provides a lower bound of the optimal cost of the studied SIRPSD for 

evaluating the quality of the feasible solution of SIRPSD.  

3.1 Lagrangian relaxation 

In Model P’, the constraints that complicate the resolution of this problem are constraints (9) 

which couple ijtq  and ijtx . They are relaxed by introducing non-negative Lagrange multipliers 
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( 1)( )ijt N N Tλ λ + × ×=  with a penalty term added to the objective function (1’). The corresponding 

Lagrangian relaxed problem (denoted by RP) can be formulated as: 

Model RP: 

( , , )Z d q xλ =
,0

1 ,0 ,(1, )0
1 1 1

( ) ( )
t

i is
s

T N tI d

it i is i t
t i s

h I d x dF x=

+

= = =

∑ + −∑∑ ∑∫
1 1 0

T N N

ij ijt
t j i

j i

c q
= = =

≠

+∑∑∑ +
1 1

T N

t i0t
t i

f x
= =
∑∑ +

0
1 1

T N
b
i i0t

t i
c x

= =
∑∑ +

1 1 0

( )
T N N

ijt ijt ijt
t j i

j i

q C xλ
= = =

≠

− ⋅∑∑∑ =
,0

1 ,0 ,(1, )0
1 1 1

( ) ( )
t

i is
s

T N tI d

it i is i t
t i s

h I d x dF x=

+

= = =

∑ + −∑∑ ∑∫  

+
1 1 0

( )
T N N

ijt ij ijt
t j i

j i

c qλ
= = =

≠

+∑∑∑ + 0
1 1

( )
T N

b
i t i0t

t i
c f x

= =

+∑∑ -
1 1 0

T N N

ijt ijt
t j i

j i

C xλ
= = =

≠

∑∑∑  (13) 

subject to 0λ ≥ , (3’), (4’), (5)-(8), (10), (11’), and (12). 

The problem can therefore be decomposed into the following two independent subproblems 

while global minimization is reserved. 

The inventory subproblem (denoted by INV), which determines the ,d q  values, can be 

formulated as: 

 1 ( , )Z d qλ = min 
,0

1 ,0 ,(1, )0
1 1 1

( ) ( )
t

i is
s

T N tI d

it i is i t
t i s

h I d x dF x=

+

= = =

∑ + −∑∑ ∑∫ +
1 1 0

( )
T N N

ijt ij ijt
t j i

j i

c qλ
= = =

≠

+∑∑∑  (14) 

subject to Constraints (3’), (4’), (5), (7), (8), (10) and (12). 

The routing subproblem (denoted by ROU), which determines the x  values, can be formulated 

as: 

 2 ( )Z xλ =min 0
1 1

( )
T N

b
i t i0t

t i
c f x

= =

+∑∑ -
1 1 0

T N N

ijt ijt
t j i

j i

C xλ
= = =

≠

∑∑∑  (15) 

subject to (6) and (11’). 

For ROU, it can be further decomposed into T independent subproblems, one for each period, 

given by: 

 ( )( )tZ xλ = min 0
1

( )
N

b
i t i0t

i
c f x

=

+∑ -
1 0

N N

ijt ijt
j i
j i

C xλ
= =
≠

∑∑  (16) 

subject to Constraints (11’) and 
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0 0

N N

ijt jit
j j
j i j i

x x
= =
≠ ≠

=∑ ∑   0,...,i N= . (17) 

Denote ( )D λ  be the function of the optimal objective value of RP for any given Lagrange 

multipliers ( 1){ }ijt N N Tλ + × × . The Lagrangian dual problem (denoted by DP) is 

Model DP: 

 max ( )D
λ

λ  (18) 

where max ( )D λ =max{ ( , , )Z d q xλ | s.t. 0λ ≥ , (3’), (4’), (5)-(8), (10), (11’), and  (12)}. 

For each given ( 1){ }ijt N N Tλ + × × >0, we have: 

( , , )Z d q xλ = 1 2( , ) ( )Z d q Z xλ λ+ = 1 ( , )Z d qλ + 2
( )( )t
t

t T

Z xλ
∈
∑  and *( , , )Z d q x Zλ ≤ , where *Z  

is the optimal value of model P’. 

3.2 Partial linearization for subproblem INV 

The subproblem INV is a nonlinear programming problem and can not be easily solved by 

using a commercial software such as Lingo. Fortunately, the objective function of INV is 

obviously a convex and increasing function of itd  1,...,t T= , and all the constraints of INV are 

linear. It can be solved by using a partial linearization method proposed by Patriksson (1993) as 

follows.  

Defining 
,0

1
'

1 ,0 ,(1, )0
1

( ,..., ) ( ) ( )
t

i is
s

tI d

it i it it i is i t
s

G d d h I d x F x dx=

+

=

∑= + −∑∫ , we have  

,0
1 ,0 ,(1, ) 10

1 1 1 1 1
( ) ( ) ( ,..., )

t

i is
s

T N t T NI d

it i is i t it i it
t i s t i

h I d x dF x G d d=

+

= = = = =

∑ + − =∑∑ ∑ ∑∑∫ . 

The gradient of function 1( ,..., )it i itG d d  with respect to ivd  1,...,v t=  is 

,0
1

'1
,(1, ) ,(1, ) ,00

1

( ,..., ,..., ) ( ) ( )
t

i is
s

tI dit i iv it
it i t it i t i is

siv

G d d d h F x dx h F I d
d

=

+

=

∂ ∑= = +
∂ ∑∫ , 1,...,v t= .  

At any point k
itd , 1,...,t T= , 1,...,i N= , the linearization of 
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,0
1 ,0 ,(1, )0

1 1 1

( ) ( )
t

i is
s

T N tI d

it i is i t
t i s

h I d x dF x=

+

= = =

∑ + −∑∑ ∑∫  is thus 
,0

1 ,0 ,(1, )0
1 1 1

( ) ( )
t

k
i is

s

T N tI d k
it i is i t

t i s

h I d x dF x=

+

= = =

∑ + −∑∑ ∑∫  

+ ,(1, ) ,0
1 1 1 1

( ) ( ))
T N t t

k k
is is it i t i is

t i s s

d d h F I d
= = = =

− +∑∑∑ ∑ . 

The linearization of 1 ( , )Z d qλ  at the point, denoted by 1(( , ), ( , ))k kZ d q d q , is thus 

1(( , ), ( , ))k kZ d q d q =
,0

1 ,0 ,(1, )0
1 1 1

( ) ( )
t

k
i is

s

T N tI d k
it i is i t

t i s

h I d x dF x=

+

= = =

∑ + −∑∑ ∑∫  

+ ,(1, ) ,0
1 1 1 1

( ) ( ))
T N t t

k k
is is it i t i is

t i s s
d d h F I d

= = = =

− +∑∑∑ ∑ +
1 1 0

( )
T N N

ijt ij ijt
t j i

j i

c qλ
= = =

≠

+∑∑∑     (19). 

The partial linearization method solves a linear programming problem and performs a line 

search at each iteration. For our problem, at each iteration k , the method solves the following 

linear programming problem (denoted by kIP ): 

kIP : 

 min 1(( , ), ( , ))k kZ d q d q          (20) 

subject to Constraints (3’), (4’), (5), (7), (8), (10) and (12). 

and performs a line search to minimize 1 ( , )Z d qλ  for subproblem INV, i.e., 

 1Min{ ( , ) | ( , ) ( , ) (1 )( , ),0 1}k k k kZ d q d q d q d qλρ
ρ ρ ρ= + − ≤ ≤ , (21) 

where ( , )k kd q  is an optimal solution of kIP . The starting point 1 1( , )k kd q+ +  of the iteration 

1k +  is taken as the solution of the line search at the iteration k . 

The iterative procedure continues until ( , )k kd q  also solves kIP . That is, 

1(( , ), ( , ))k kZ d q d q = 1(( , ), (( , )))k kZ d q d q . Initially at k = 0, ( , )k kd q  is taken as a feasible 

solution of subproblem INV. 

3.3 Minimum cost flow for ROU subproblem 

The constraint matrix of subproblem ROU is totally unimodular and the right-hand side are 

integers, so every basic feasible solution is integral (see Wolsey (1998). In other words, solving 

the problem as a linear program using the simplex method always yields an integral solution. 
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Moreover, subproblem ROU can be transformed into a minimum cost flow (MCF) problem that 

can be solved by the out-of-kilter algorithm, Klein, Jewell, Busacker & Gowan’s method etc. 

These algorithms run in polynomial time, and have a lower complexity than the fastest linear 

programming algorithms. In our ROU subproblem, {0,1}ijtx ∈  thus is relaxed to 0 1ijtx≤ ≤  

and ROU subproblem be solved by minimum cost flow method. 

3.4 Subgradient method for the dual problem 

The Lagrangian relaxation approach maximizes the dual objective (18) by using subgradient 

method. We use adaptive step sizing strategy to set the step size of the method in each iteration. 

The algorithm steps for the Lagrangian relaxation is given as follows. 

Step 0. Give an initial value 0λ =0, 0 1θ =  and k=0  

Step 1. Calculate subproblem INV and subproblem ROU. 

Step 2. Calculate step size ks  in iteration k by 

2*( ) /k k ks L L gβ= − %  

where β  is a parameter with 0 1β< < , kL%  is current lower bound, [ ]kL%  is the best dual 

obtained prior to iteration k, *L  is estimated by [ ](1 ) kLρ

ω
θ

+ % , where [0.1, 1.0]ω∈ , 

[1.1, 1.5]ρ ∈ , 1 max(1, 1)k kθ θ+ = − ( kθ  is value of θ  in iteration k if [ ]k kL L> % , 

otherwise 1 1k kθ θ+ = + ), and 
2kg = 2

1 1 0

( )
T N N

k k
ijt ijt

t j i
j i

q C x
= = =

≠

− ⋅∑∑∑ . 

Step 3. Calculate 1 max{ ( ), 0}k k k k k
ijt ijt ijt ijts q C xλ λ+ = + − ⋅ . 

Step 4. Check stopping criteria. The criteria may be given by 

(1) 1
1

k k
ijt ijt

ijt

λ λ ε+ − ≤∑  or 1
2

k kλ λ ε+ − ≤ , or 

(2) a given maximal iteration time reached; where 1ε  and 2ε  are given little positive numbers. 

If the criterion is met, stop and output all required results. Otherwise, set k=k+1 and go to Step 1. 

The solution of the Lagrangian relaxation problem is not only provide a lower bound of Model P’, 



2010-1-23 

 16

then the SIRPSD, but also can be used to construct a near optimal feasible solution of Model P’. 

3.5 Feasible solution construction for the Model P’ 

Based on ,d q  obtained by solving the Lagrangian relaxed problem, similar to Yu et al. (2008), a 

feasible solution Model P’ can be constructed by solving the following problem, denoted by FP. 

Model FP: 

 ( )Z xλ = min 0
1 1

( )
T N

b
i t i0t

t i
c f x

= =

+∑∑  (22) 

Subject to 

 
0 0

N N

ijt jit
j j
j i j i

x x
= =
≠ ≠

=∑ ∑   0,...,i N=  1,...,t T=  (23) 

 ijt
ijt

q
x

C
⎡ ⎤

≤⎢ ⎥
⎢ ⎥

  0,...,i N= , 1,...,j N= i j≠  1,...,t T=  (24) 

 {0,1}ijtx ∈  j i≠ , 0 0,i t jtx x  integer , 1,...,i j N=  1,...,t T=  (25) 

where ijtq  0,...,i N= , 1,...,j N= i j≠  is obtained from the solution of the relaxed problem 

solved by subgradient method in subsection 3.4. The problem FP can be reformulated as a 

minimal cost flow problem again by relaxing x to: 

 1ijt
ijt

q
x

C
⎡ ⎤

≤ ≤⎢ ⎥
⎢ ⎥

  1,...,i N= , 1,...,j N= i j≠  1,...,t T=  (26) 

 0
0

jt
jt

q
x

C
⎡ ⎤

≥ ⎢ ⎥
⎢ ⎥

,  1,...,j N=  1,...,t T=  (27) 

The problem can be decomposed into T sub-problems, one for each period. 

In order to obtain a good feasible solution of Model P’, the feasible solution is constructed based 

on every solution obtain in every iteration of the subgradient method in subsection 3.4. The best 

one (with the smallest total cost measured by Equation (1’)) is selected as the final one. 

4. Feasible solution construction and improvement for the SIRPSD 

This section provides an approach to repair a obtained feasible solution of Model P’ in subsection 
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3.5 to a feasible solution of the studied SIRPSD, and improve them with some local search 

improvements. 

4.1 Repair a solution of P’ to a feasible solution of SIRPSD 

In subsection 3.5, a feasible solution, , ,d q x  of Model P’, is obtained, but this solution is not 

implementable since q has not been dedicated to individual vehicles as feasible routes. Moreover, 

the solution may not define a feasible solution of the original problem SIRPSD. (shown later in 

Figure 2). 

In order to obtain a feasible solution of the SIRPSD, a method is required to trace a set of feasible 

routes in every period based on the solution of model P’. Because the method is the same for 

every period, for simplification we omit the subscript t of the corresponding variables and 

parameters in the following discussion. Similar to the approach in (Yu et al., 2008), the method 

can be represented with the following steps. 

Step 1. Build a directed transportation graph. With x  values of the feasible solution of Model 

P’, a directed transportation graph, as exemplified in Figure 1(a), can be defined in each period t 

where two customer nodes (or a customer and the depot nodes) i  and j are connected ijx  

times by directed arcs ( , )i j  if 1ijx ≥ . The depot is split into two virtual ones: an outgoing 

depot (numbered as 0) and an incoming depot (numbered as 0’). The directed arcs associated with 

{ | 1, 0,..., }ji jix x j N≥ =   are called incoming arcs of customer node i , and the directed arcs 

associated with { | 1, 0,..., }ij ijx x j N≥ =  are called outgoing arcs of customer node i . The 

customer nodes are virtually numbered here by the rule: an unnumbered customer node i can be 

numbered as next if and only if all the notes pointed to i have been numbered. The numbering will 

give the sequence to assign arcs into vehicle routes. 
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(a)                                                               (b)

0 0’

4

2

1

5

3

0 0’

4

2

1

5

3

0
0

20

10

30
8 14

9

20
15

 

Figure 1. A directed transportation graph 

Step 2. Evaluate directed arcs. In the feasible solution of model P’, for each 1ijx ≥  

corresponds a ijq . We evaluate all directed arcs with ijq  to obtain evaluated graph as shown in 

Figure 1(b). For customer node i , { | 1, 0,..., }ji jiq x j N≥ =  form its inflows, and 

{ | 1, 0,..., }ij ijq x j N≥ =  form its outflows. 

Step 3. Assign q  on directed arcs into individual vehicle routes. Starting from numbered 

customer 1, we check customers 2,…,n successively. If the number of incoming arcs and the 

number of outgoing arcs of every customer node is equal to 1, that is, each customer’s delivery is 

realized by only a single vehicle, and then a set of feasible routes can be naturally traced from a 

feasible solution , ,d q x  of Model P’. The solution of Model P’ is also a feasible solution of the 

SIRPSD. Otherwise, there exists at least one customer node that has more than one incoming and 

outgoing arcs. In this case, the assignment problem is recalled to match incoming flows with 

outgoing flows to construct individual vehicle routes. The objective function of the assignment 

problem is given by: if an inflow of customer i is assigned to a larger outflow, the match of the 

inflow and outflow is feasible and the assignment does not occur a cost in the objective function. 

Otherwise, the match is infeasible and a penalty is given as the assignment cost. Besides, because 

0ix  can be an integer larger than 1 (corresponding to multiple arcs), 0iq  has to be split to 

multiple quantities to give every arc a corresponding inflow. This can be realized by letting each 

inflow equaling an outflow of customer i respectively and then assign the rest of unassigned 

quality to each arc considering vehicle capacity. 
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If the objective function of the assignment problem is 0, the adjustment of the matches to be 

feasible is not necessary, otherwise go to next step. 

Step 4. Adjust an infeasible match into a feasible one. 

When the objective value of the assignment problem for a customer is not equal to zero, x  q , 

related to the customer node need to be adjusted so that the tracing of feasible routes can continue. 

The typical example for the infeasibility is shown in Figure 2(a); no matter how the inflows and 

incoming arcs and outgoing arcs of customer node 3 are matched, it is impossible to find an 

outflow (i.e., 14 on arc 3->5 or12) on arc 3->4) feasibly matching with an inflow (10 on arc 1->3).. 

In this case, the value adjustment is required based on the solution of the assignment problem. The 

solution of the corresponding assignment problem for customer node 3 may suggest that the 

inflow on arc (1, 3) is matched with outgoing arc (3, 4) to trace a route, and another outgoing arc 

of the customer node is arc (3, 5). In this case, the values ,x q  in Figure 2(a) are adjusted to 

those in Figure 2(b). The value adjustment is important because it makes the matching of 

incoming arcs and outgoing arcs of customer node 3 feasible, and then the procedure of tracing 

feasible routes can proceed to the customer node 3’s immediate successor-customer node 4. 

 

Figure 2. An example for value adjustment 

When the procedure of the matching and value adjustment for all customer nodes in every period 

is finished, a feasible solution of the studied SIRPSD is obtained.  

4.2 Local search improvement of the feasible solution of the SIRPSD 

A feasible solution of the SIRPSD can be improved further by local search. This subsection 

presents several local search heuristics to reduce the total cost of the SIRPSD as follows.  
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4.2.1 Relocation of customer delivery between two routes 

When multiple vehicle routes serve a common customer, as in Figure 3(a), where customer 1 is a 

common customer served by two routes, the feasible routes may be improved by using the 

methods of relocating a customer’s delivery from one route to another, as illustrated in Figure 

3(b)-(c) where the delivery form customer 1 is relocated from route 2 to route 1 in Figure 3(b) and 

it is relocated from route 1 to route 2 in Figure 3(c). The variable transportation costs are reduced 

by 01 13 0370( ) 70(2 2 3) 70c c c+ − = + − =  and 01 12 0240( )c c c+ −  40(2 2 2) 80= + − =  for those two 

relocations respectively because 80>70, the relocation in Figure 2(c) is selected. 

 

Figure 3. Example 1 for local search improvement 

As an exceptional case, it is possible that multiple routes visit a common customer with one route 

may visit the common customer with null delivery as route 1 visiting common customer 3 shown 

in Figure 4(a). In this case, by deleting the common customer from the route, the variable 

transportation cost can be reduced by 01 13 03100( )c c c+ −  100(2 2 3) 100= + − =  according to the 

triangle inequalities for ijc . 
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Figure 4. Example 2 for local search improvement 

Note that the situation like in Figure 3 only occurs where the common customer (e.g. customer 1 

in Figure 3) is the first served customer of multiple routes since , 1,...,ijx i j N=  are binary 

variables in Model P’. However, for the situation like in Figure 4, the common customer of 

multiple routes may not be the first served customer of the multiple routes. 

4.2.2 Reduce the number of routes 

The number of routes can be reduced by merging two vehicles not fully loaded to make all routes 

as fully loaded as possible if the merging reduces the total cost. With the reduction of route 

number, it is possible to increase the total vehicle utilization, and reduce the fixed cost 

1 1

T N

t i0t
t i

f x
= =
∑∑ . In this local search, every pair of vehicles is checked for possible merging, and two 

vehicle routes are merged if the merged route is feasible and the total transportation cost is 

reduced. Figure 5(b)-(c) illustrates that two vehicle routes in Figure 5(a) can be merged together to 

reduce the total cost. In Figure 5(b), a new route is obtained by first following the route with 

dotted line and then the route with solid line and the transportation cost is reduced by 

02 4050 b
tf c c+ +  01 14 4250( )c c c− + − 100 50 3= + + 50(1 1 1) 3− + + = . In Figure 5(c), the route with 

solid line is followed firstly and the fixed transportation cost is reduced by 

02 30 01 14 4230 30( )b
tf c c c c c+ + − + +  100 30 3= + +  30(1 1 1)− + +  43= . As a result, the route 

merging in Figure 5(b) is selected. 

 

Figure 5. Example 3 for local search improvement 
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5. Normal distribution for demands and solution evaluation 

In Model P or P’, the stochastic demand in each period is in a generic form that is applicable to 

different stochastic demand distribution functions, like normal distribution function, Weibull 

Distribution, Log Normal Distribution, etc. In order to apply our proposed model and solution 

approaches to numerical examples, we have to specify the distributions of the customers’ stochastic 

demands.  

For a given distribution of itζ  in our Model P, we need to obtain ,(1, ) ,0
1

( )
t

i t i is
s

F I d
=

+∑  value for 

Equation (1’), constraints (3’) and (4’) and update these constraints. We show here the update 

process for the normal distribution of itζ  since it is mostly used in theory and practice. 

5.1 Normal distribution for stochastic demands  

Supposing that itζ  is a random variable subject to a normal distribution with mean iu  and 

standard deviation iσ , that is, 

 2~ ( , )it i iN uζ σ . (28) 

We have a probability density function : 

2

2
( )

21( )
2

it i

i

u

it it it
i

f e
ζ

σζ ζ
σ π

−
−

= −∞ ≤ ≤ +∞  

The accumulative customer demand ,(1, )i tζ =
1

t
iss

ζ
=∑  obeys 2

,(1, ) ~ ( , )i t i iN tu tζ σ  

Defining 
2 / 2

0

1( )
2

x tx e dt
π

−Φ = ∫ , we have  

 ,(1, )
,(1, ) ,(1, )( ) ( ) ( ) ( )i t i i i

i t i t
i i i

tu r tu r tuF r P r P
t t t

ζ
ζ

σ σ σ
− − −

= ≤ = ≤ = Φ . (29) 

The stochastic part 
1 1

( )
T N

it it
t i

E h I +

= =
∑ ∑  in the objective function (1’) can therefore be reformulated as: 

,0
1 ,0 ,(1, )0

1

( ) ( )
t

i is
s

tI d

i is i t
s

I d r dF r=

+

=

∑ + −∑∫
2 2 2 2,0 1

-( - ) /(2 ) - /(2 )1 2(( - )
2

t
i is i is i i

I d tu t tu
i

te eσ σ σ
π

=
+∑=  



2010-1-23 

 23

,0 1
,0

1

( - ( ))
2( - )( ( ) - ( )))

t
t

i i isi s
i is i

s i i

tu I du tI d tu
tσ σ

=

=

+
+ + Φ Φ ∑∑ . 

For Constraints (3’), we have ,(1, ) ,0 ,(1, )
1

( ) (0)
t

i t i is i t
s

F I d F
=

+ −∑ itα≥ , that is, 

,0 1
(( ) ) -( ) ( )

t
i is is i

it
ii

I d tu u t
t

α
σσ

=
+ −

Φ −Φ ≥∑
 and ,0 1

( -( ))
( ) ( )

t
i i iss i

it
ii

tu I d u t
t

α
σσ

=
+

Φ ≤Φ −∑
. 

After reformulating, we have 1
,01

- ( ( ) )t i
is i i it is

i

u td tu t Iσ α
σ

−
=

≥ Φ Φ − −∑ . in practice, if 

30%i iuσ ≤ , we can omit ,(1, ) (0)i tF  since ,(1, ) ,1(0) (0)i t iF F≤ =4.3 410−× , and the constraints 

can be reformulated as 1
,01

- (1 )t
is i i it is

d tu t Iσ α−
=

≥ Φ − −∑ . 

Similarly, Constraints (4) or (4’) can be reformulated as  

1
,01

1( 1) ( (1 ))t
is i i i it is

td V t u t I
t

σ β−
=

−
≤ + − + Φ − −∑ . 

5.2 Solution evaluation 

In Section 4, a feasible solution of the SIRPSD is obtained and its corresponding total cost provides 

an upper bound of the minimum total cost of the studied SIRPSD. The quality of the solution can 

then be evaluated by the relative gap between the lower and upper bounds, e.g., (the upper 

bound-the lower bound)/the upper bound ×100%. The smaller the gap is, the better the solution is. A 

lower bound of the minimum total cost is already available as the result of Subsection 3.4 for the 

evaluation in this paper. 

6. Numerical examples 

This section aims to evaluate the performance of our developed approach. The stochastic demand 

itζ  is subject to a normal distribution with 2~ ( , )it i iN uζ σ . We first consider a base example 

with the total number of customers and the depot, N0, being 100. In the example, the length of the 

time horizon is taken as T=5, which corresponds to five working days every week. Parameters itu , 

C, tf , ith , 0iI , and iV  are randomly and uniformly generated from the intervals [50, 400], [100, 
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300], [400, 700], [0.5, 2] , [50, 400], and [600, 1000] respectively; For ijc , to ensure that the 

triangle inequality condition is satisfied, we first generate the coordinates of all customers and the 

central depot from a 10×10 square, and then calculate ijc  as the geometrical distance between 

customers i  and j . 0.2it ituσ = , 95%it itα β= = , and 0
b
ic  = 010 ic× . The domains of the 

above parameters are mainly taken from Yu et al (2008). We generate 10 random examples for the 

base example with corresponding results presented in Table 2. The notations used for presenting the 

results are shown in Table 1.  

 

In order to evaluate the robustness of our approach, based on the parameters of the base example, 

we generate 10 instances for each of other four scenarios: a) the service levels of customer 

demands itα , and the customers’ warehouses itβ  are both changed from 95% to 99% (see results in  

Table 3), b) itσ  is changed from 0.2 itu  to 0.3 itu  (the results shown in  

Table 4), c) T is changed from 5 to 10 (the results shown in Table 5), and d) N0 is changed from 100 

to 200 (the results shown in Table 6). 

The approach is coded in C++ using callable library of Lingo 6.0. To obtain a high quality solution 

of the SIRPSD, we construct a feasible solution of the Model P’ based on the solution of its relaxed 

problem in every iteration. The best feasible solution of Model P’ is repaired to be the final feasible 

solution of the SIRPSD. The test is conducted on an Intel (R) Core (TM) Due CPU 2.4GHz 

notebook PC with 2 G RAM and the termination condition of each instance for the Lagrangian 

relaxation approach is 150 iterations.  

Table 1: Notations used in numerical results 

UB Upper bound of the SIRPSD (given by the near optimal solution of the SIRPSD) 
LB Lower bound of the SIRPSD (found by the Lagrangian relaxation approach in Section 

3) 
Gap Value of (UB-LB)/UB 100%×  
CT Computational time (minutes: seconds) 

 

Table 2: Computational results for the base example 

Instance LB(105) UB(105) Gap(%) CT 
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1 10.36 10.69 3.14 12:43 
2 8.06 8.51 5.28 11:59 
3 9.14 9.94 8.05 10:25 
4 7.41 7.90 6.19 11:13 
5 12.27 12.36 0.78 13:01 
6 11.89 12.03 1.15 12:54 
7 10.24 10.61 3.50 11:22 
8 7.00 7.59 7.70 11:10 
9 8.52 9.05 5.84 11:18 

10 10.25 10.51 2.43 11:05 
Average 9.51 9.85 4.41 11:47 

 

Table 3: Results for the example with service levels ( itα  and itβ ) no less than 99% 

Instance LB(105) UB(105) Gap(%) CT 
1 11.80 12.01 1.75 12:40 
2 12.78 13.04 2.00 13:11 
3 11.03 11.31 2.48 12:37 
4 11.73 12.16 3.55 11:04 
5 8.49 8.95 5.14 12:39 
6 8.42 8.81 4.46 11:27 
7 9.12 9.59 4.93 12:13 
8 8.70 9.33 6.74 11:52 
9 9.66 10.20 5.22 11:17 

10 7.59 8.33 8.87 11:10 
Average 9.93 10.60 4.51 12:07 

 

Table 4: The results for the example with 0.3it ituσ =  

Instance LB(105) UB(105) Gap(%) CT 
1 9.90 10.38 4.62 10:33 
2 9.29 9.74 4.62 10:04 
3 9.48 10.00 5.16 11:31 
4 13.89 14.07 1.25 10:46 
5 8.80 9.44 6.87 12:17 
6 9.42 9.75 3.34 10:15 
7 10.14 10.59 4.24 11:01 
8 9.59 10.04 4.44 10:33 
9 8.79 9.36 6.09 11:09 

10 9.09 9.49 4.17 11:23 
Average 9.84 10.37 4.48 10:54 
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Table 5: The results for the example with T=10 

Instance LB(105) UB(105) Gap(%) CT 
1 21.20 21.59 1.80 29:52 
2 17.33 18.31 5.35 30:27 
3 18.18 18.95 4.06 27:44 
4 20.03 20.83 3.83 28:45 
5 16.93 18.45 8.20 28:54 
6 18.01 18.64 3.39 31:02 
7 17.84 19.08 6.49 27:37 
8 19.84 20.70 4.16 26:60 
9 15.77 17.10 7.78 28:52 

10 17.56 18.44 4.77 31:23 
Average 18.27 19.29 4.98 28:55 

 

Table 6: The results for the example with N0 =200 

Instance LB(105) UB(105) Gap(%) CT 
1 19.61 20.23 3.05 75:27 
2 14.98 15.93 5.99 67:41 
3 18.55 19.85 6.55 63:18 
4 17.01 17.49 2.76 73:36 
5 15.83 16.86 6.06 65:09 
6 21.51 22.11 2.70 77:34 
7 15.34 16.19 5.29 65:21 
8 16.27 17.34 6.16 68:42 
9 22.17 22.65 2.14 67:57 

10 17.27 18.32 5.70 68:03 
Average 16.23 18.74 4.64 69:25 

From Tables 2-6, we obtain the following observations: 

1) Our algorithm can obtain high quality near-optimal solutions to the studied SIRPSD with 

the average gap between the upper bound and the lower bound of the problem less than 

5%for all considered scenarios.  

2) For all the scenarios, the largest gap is 8.87% (in  

3) Table 3) and the smallest gap is 0.78% (in Table 2). This shows that our approach is robust 

since the gap for a scenario does not change much with the change of parameter values.  

4) Our approach can solve large instances of the SIRPSD in a reasonable computational time 

on an ordinary PC, with the average computational time of the instances of the base 

example being only 11 minutes and 47 seconds. With the increase of the problem size from 
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0N =100 to 200, our approach can obtain near optimal solutions within 70 minutes on the 

average. Although the number of decision variables increases from about 99 thousands to 

about 400 thousands and the number of integer variables from about 50 thousands to about 

200 thousands for each instance, similar results can be obtained when T is changed from 5 

to 10. 

5) With the increase of the problem size, the average gap increases slightly. For instance, 

with the increase of 0N from 100 to 200 or the increase of T from 5 to 10, the average gap 

only increases 0.23% and 0.57% respectively from Tables 5-6.  

6) With the increase of the service level itβ  for each customer i’s warehouse, and the increase 

of the service level itα  for each customer i, the average total cost for a scenario increases 

but the average gap between the upper and lower bounds is rarely changed which can be 

seen from the comparison between Table 2 and 3. 

7) With the increase of the uncertainty of the customers’ demands by changing 0.2it ituσ =  to 

0.3it ituσ = , we can see that the average gap increases slightly by 0.07%. This may be 

because meeting the required service levels becomes more difficult with the increase of 

the demand uncertainty. 

7. Conclusion 

This paper studies a stochastic inventory routing problem with split delivery where the service level 

to satisfy each customer’s demand measured in stockout probability and the service level to each 

customer’s warehouse measured in its overfilling probability are considered. The complexity of the 

SIRPSD with service levels motivates us to develop a hybrid approach which uses techniques such 

as the transformation of stochastic components of a model of the SIRPSD into deterministic ones, 

the use of Lagrangian relaxation to decompose the model into submodels, the partial linearization 

of the nonlinear objective function of the model, and local search improvement of feasible solutions 

of the studied SIRPSD to solve it. The numerical examples demonstrate that our proposed approach 

can obtain high quality solutions in a reasonable computational time on an ordinary personal 

computer. 
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