33 research outputs found

    Construction of gauge invariant effective nucleonic theories: functional approach

    Get PDF
    Starting from relativistic quantum field theories, describing interacting nucleons and pions coupled to the dynamical electromagnetic field, the pion degrees of freedom are eliminated by means of functional integration. Apart from taking into account some operators perturbatively in ee, e.g. the vacuum polarization, this procedure is exact, giving effective theories for nucleons and photons. The subsequent nonrelativistic reduction yields the corresponding nonrelativistic quantum field theory. The latter is unique, irrespective of the precize form of the original nucleon-pion interaction. Nucleonic potentials and electromagnetic interactions are mutually consistent. Local gauge invariance is satisfied at any stage of the formal developments.Comment: 15 pages, LaTe

    The electron-nucleon cross section in (e,eâ€Čp)(e,e'p) reactions

    Get PDF
    We examine commonly used approaches to deal with the scattering of electrons from a bound nucleon. Several prescriptions are shown to be related by gauge transformations. Nevertheless, due to current non-conservation, they yield different results. These differences reflect the size of the uncertainty that persists in the interpretation of (e,eâ€Čp)(e,e'p) experiments.Comment: 6 pp (10 in preprint form), ReVTeX, (+ 4 figures, uuencoded

    Nuclear currents based on the integral form of the continuity equation

    Full text link
    We present an approach to obtain new forms of the nuclear electromagnetic current, which is based on an integral form of the continuity equation. The procedure can be used to restore current conservation in model calculations in which the continuity equation is not verified. Besides, it provides, as a particular result, the so-called Siegert's form of the nuclear current, first obtained by Friar and Fallieros by extending Siegert's theorem to arbitrary values of the momentum transfer. The new currents are explicitly conserved and permit a straightforward analysis of their behavior at both low and high momentum transfers. The results are illustrated with a simple nuclear model which includes a harmonic oscillator mean potential.Comment: 19 pages, revtex, plus 2 PS figure

    Covariance of Light-Front Models: Pair Current

    Get PDF
    We compute the "+" component of the electromagnetic current of a composite spin-one two-fermion system for vanishing momentum transfer component q+=q0+q3q^+=q^0+q^3. In particular, we extract the nonvanishing pair production amplitude on the light-front. It is a consequence of the longitudinal zero momentum mode, contributing to the light-front current in the Breit-frame. The covariance of the current is violated, if such pair terms are not included in its matrix elements. We illustrate our discussion with some numerical examples.Comment: 17 pages,include 5 figures (lfcxx.eps, lfczx.eps,lfczz.eps, lfcagg.eps and lfcaqq.eps), use latex,epsf,elsart, e-mail: [email protected], [email protected], [email protected], [email protected], Accepted in Nucl.Phys. A (1999

    Final State Charge Exchange Interactions in the 12C(e,eâ€Čp)^{12}C(e,e'p) Reaction

    Get PDF
    The 12C(e,eâ€Čp)^{12}C(e,e'p) reaction is analyzed in a model which explicitly includes final state interactions due to the coupling of the proton and neutron emission channels. We find that the effects of the final state interactions due to charge exchange reactions are important to get a good description of the symmetry properties of the recently measured Mainz spectral functions. We discuss the possible role the off-shell effects may play for the correct interpretation of spectral functions at large positive missing momenta.Comment: 9 pages Revtex, 4 figure

    Antiproton-nucleus electromagnetic annihilation as a way to access the proton timelike form factors

    Full text link
    Contrary to the reaction pbar + p --> e+ e- with a high momentum incident antiproton on a free target proton at rest, in which the invariant mass M of the (e+ e-) pair is necessarily much larger than the (pbar p) mass, in the reaction pbar + d --> n e+ e- the value of M can take values near or below the (pbar p) mass. In the antiproton-deuteron electromagnetic annihilation, this allows to access the proton electromagnetic form factors in the time-like region of q^2 near the (pbar p) threshold. We estimate the cross section dsigma(pbar +d --> e+ e- n)/dM for an antiproton beam momentum of 1.5 GeV/c. We find that near the (pbar p) threshold this cross section is about 1 pb/MeV. The case of heavy nuclei target is also discussed. Elements of experimental feasibility are presented for the process pbar + d --> n e+ e- in the context of the Panda project.Comment: 14 pages, 11 figures. submitted to EPJ

    Neutral Pion Photoproduction on Nuclei in Baryon Chiral Perturbation Theory

    Get PDF
    Threshold neutral pion photoproduction on light nuclei is studied in the framework of baryon chiral perturbation theory. We obtain a general formula for the electric dipole amplitude in the special case of neutral pion photoproduction on a nucleus. To third order in small momenta, the amplitude is a sum of 2- and 3-body interactions with no undetermined parameters. With reasonable input from the single nucleon sector, our result for neutral pion photoproduction on the deuteron is in agreement with experiment.Comment: 24 pages, 4 uuencoded postscript figures, uses LaTex and epsf.tex. Added footnote and references. Minor changes in text and forma

    Canonical Formulation of the Light-Front Gluodynamics and Quantization of the Non-Abelian Plane Waves

    Get PDF
    Without a gauge fixing, canonical variables for the light-front SU(2) gluodynamics are determined. The Gauss law is written in terms of the canonical variables. The system is qualified as a generalized dynamical system with first class constraints. Abeliazation is a specific feature of the formulation (most of the canonical variables transform nontrivially only under the action of an Abelian subgroup of the gauge transformations). At finite volume, a discrete spectrum of the light-front Hamiltonian P+P_+ is obtained in the sector of vanishing P−P_-. We obtain, therefore, a quantized form of the classical solutions previously known as non-Abelian plane waves. Then, considering the infinite volume limit, we find that the presence of the mass gap depends on the way the infinite volume limit is taken, which may suggest the presence of different ``phases'' of the infinite volume theory. We also check that the formulation obtained is in accord with the standard perturbation theory if the latter is taken in the covariant gauges.Comment: REVTEX, 18 pages, version to appear in Phys. Rev.

    Role of baryonic resonances in the dilepton emission in nucleon-nucleon collisions

    Get PDF
    Within an effective Lagrangian model, we present calculations for cross sections of the dilepton production in proton-proton and proton-neutron collisions at laboratory kinetic energies in 1-5 GeV range. Production amplitudes include contributions from the nucleon-nucleon bremsstrahlung as well as from the mechanism of excitation, propagation, and radiative decay of Delta(1232) and N*(1520) intermediate baryonic resonances. It is found that the delta isobar terms dominate the cross sections in the entire considered beam energy range. Our calculations are able to explain the data of the DLS collaboration on the dilepton production in proton-proton collisions for beam energies below 1.3 GeV. However, for incident energies higher than this the inclusion of contributions from other dilepton sources like Dalitz decay of pi0 and eta mesons, and direct decay of rho and omega mesons is necessary to describe the data.Comment: 22 pages, 7 figures, more details of the calculations added, version to appear in Phys. Rev

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N∗(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N∗(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N∗(1535)N^{*}(1535), these are: N∗(1440),N∗(1520),N∗(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N∗(1710)N^{*}(1710). The amplitudes for the π∘\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N∗(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N∗(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×10−1GeV−1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×10−1GeV−1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N∗(1535)→γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×10−3GeV−1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×10−3GeV−1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.
    corecore