185 research outputs found

    Effects of lectins on calcification by vesicles isolated from aortas of cholesterol-fed rabbits

    Get PDF
    AbstractAdvanced vascular calcification in atherosclerosis weakens arterial walls, thereby imposing a serious rupturing effect. However, the mechanism of dystrophic calcification remains unknown. Although accumulating morphological and biochemical evidence reveals a role for calcifiable vesicles in plaque calcification, the mechanism of vesicle-mediated calcification has not been fully explored. To study whether vesicles’ membrane components, such as carbohydrates, may have a role in vesicle-mediated calcification, the effect of sugar-binding lectins on calcification was investigated. Atherosclerosis was developed by feeding rabbits with a diet supplemented with 0.5% cholesterol and 2% peanut oil for 4 months. Calcifiable vesicles were then isolated from thoracic aortas by collagenase digestion. The histological examination of aortas with hematoxylin counter-staining indicated abnormal formation of large plaques enriched with macrophage-derived foam cells. Fourier transform spectroscopy revealed mild calcification in aortas indicating that advanced stages of heavy calcification have yet to be reached. However, vesicles isolated from the aortas were capable of calcification in the presence of physiological levels of Ca2+, Pi, and ATP. Thus, at this stage of atherosclerosis, aortas may start to produce calcifiable vesicles, but at a level insufficient for substantial formation of mineral in aortas. The assessments by FT-IR analysis and Alizarin red staining indicated that concanavalin A (Con A) substantially increased mineral formation by isolated vesicles. Con A also exerted a marked stimulatory effect on 45Ca and 32Pi deposition in a dose-dependent fashion with a half-maximal effect at 6–10 μg/ml. Either α-methylmannoside or α-methylglucoside, but not mannitol, at 10 mM abolished the stimulation. Con A stimulation was abolished after Con A was removed from calcifying media, suggesting that covalent binding may not be involved in the effect. Galactosides appear to also be implicated in 45Ca and 32Pi deposition since Abrus precartorius agglutinin, which specifically binds galactosides, enhanced the deposition. Neither wheat-germ agglutinin that binds N-acetylglucoside nor N-acetylgalactoside-specific Helix pomatia agglutinin was effective, suggesting that the acetylated forms of carbohydrate moieties are either absent in vesicles or may not be involved in calcification. None of these lectins exerted an effect on ATPase. Thus, the effects of lectins appeared to be mediated through interactions with carbohydrate moieties of calcifiable vesicles. Whether stimulation of vesicle-calcification by lectins is of pathological significance in atherosclerotic calcification requires further investigation

    Mechanisms of calcification by vesicles isolated from atherosclerotic rabbit aortas

    Get PDF
    AbstractAlthough several lines of evidence support the role of calcifiable vesicles in dystrophic vascular calcification, the mechanisms whereby vesicles promote aortic calcification remain incompletely understood. Previous reports indicate that ATP promotes in vitro vesicle calcification. Whether ATP-initiated calcification is simply mediated through increased Pi concentrations or by other unknown mechanisms related to ATP hydrolysis is unclear. To determine whether high Pi levels resulting from ATP hydrolysis may cause Ca×P ion products to surpass the threshold for calcium phosphate precipitation, 3 mM Pi instead of 1 mM ATP was added to calcifying media. The inclusion of 1 mM ATP in calcifying media with an initial serum level of Ca2+ (1.45 mM) and Pi (2.3 mM) was much more effective in promoting calcification than the addition of 3 mM Pi. The higher effectiveness of ATP over Pi in promoting calcification was consistent throughout various incubation periods and vesicle protein ranges. To minimize the effect of Ca×Pi ion products on calcification, the ion product was kept within the physiological ranges throughout the incubation period by reducing initial Pi or ATP concentrations in calcifying media. At these low levels of ion products, ATP was still more effective than Pi in promoting calcification. Both ATP- and Pi-stimulated calcifications were found to increase with increasing levels of ion products whereas greater effectiveness of ATP over Pi remained unaltered. These observations indicate that ATP hydrolysis may initiate calcification through some mechanisms other than a simple provision of Pi in order to surpass the solubility products. Concanavalin A (Con A) was found to bind to vesicles and to enhance both ATP- and Pi-promoted calcification. Taken together, these observations suggest that ATP hydrolysis, Ca×P ion products, and vesicle-associated carbohydrates are implicated in vesicle-mediated calcification

    Perception of Relative Depth Interval: Systematic Biases in Perceived Depth

    Get PDF
    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.</jats:p

    Building the evryscope: Hardware design and performance

    Get PDF
    The Evryscope is a telescope array designed to open a new parameter space in optical astronomy, detecting shorttimescale events across extremely large sky areas simultaneously. The system consists of a 780 MPix 22-camera array with an 8150 sq. deg. field of view, 13″ per pixel sampling, and the ability to detect objects down to mg' ≃ 16 in each 2-minute dark-sky exposure. The Evryscope, covering 18,400 sq. deg. with hours of high-cadence exposure time each night, is designed to find the rare events that require all-sky monitoring, including transiting exoplanets around exotic stars like white dwarfs and hot subdwarfs, stellar activity of all types within our galaxy,nearby supernovae, and other transient events such as gamma-ray bursts and gravitational-wave electromagnetic counterparts. The system averages 5000 images per night with ~300,000 sources per image, and to date has taken over 3.0M images, totaling 250 TB of raw data. The resulting light curve database has light curves for 9.3M targets, averaging 32,600 epochs per target through 2018. This paper summarizes the hardware and performance of the Evryscope, including the lessons learned during telescope design, electronics design, a procedure for the precision polar alignment of mounts for Evryscope-like systems, robotic control and operations, and safety and performance-optimization systems. We measure the on-sky performance of the Evryscope, discuss its data analysis pipelines, and present some example variable star and eclipsing binary discoveries from the telescope. We also discuss new discoveries of very rare objects including two hot subdwarf eclipsing binaries with late M-dwarf secondaries (HWVir systems), two white dwarf/hot subdwarf short-period binaries, and four hot subdwarf reflection binaries. We conclude with the status of our transit surveys, M-dwarf flare survey, and transient detection

    Hot Subdwarf All Southern Sky Fast Transit Survey with the Evryscope

    Get PDF
    We have conducted a survey of candidate hot subdwarf (HSD) stars in the southern sky searching for fast transits, eclipses, and sinusoidal-like variability in the Evryscope light curves. The survey aims to detect transit signals from Neptune-size planets to gas giants, and eclipses from M-dwarfs and brown dwarfs. The other variability signals are primarily expected to be from compact binaries and reflection effect binaries. Due to the small size of HSDs (R ≈ 0.2 R o&amp;dot;), transit and eclipse signals are expected to last only ≈20 minutes, but with large signal depths (up to completely eclipsing if the orientation is edge on). With its 2 minute cadence and continuous observation, the Evryscope is well placed to recover these fast transits and eclipses. The very large field of view (8150 deg2) is critical to obtain enough HSD targets, despite their rarity. We identified ≈11,000 potential HSDs from the 9.3 M Evryscope light curves for sources brighter than m g = 15. With our machine-learning spectral classifier, we flagged high confidence targets and estimate the total HSDs in the survey to be ≈1400. The light-curve search detected three planet transit candidates, shown to have stellar companions from follow-up analysis. We discovered several new compact binaries (including two with unseen degenerate companions), two eclipsing binaries with M-dwarf companions, as well as new reflection effect binaries and others with sinusoidal-like variability. Four of the discoveries are being published in separate follow-up papers, and we discuss the follow-up potential of the other discoveries

    Variables in the southern polar region evryscope 2016 data set

    Get PDF
    The regions around the celestial poles offer the ability to find and characterize long-term variables from groundbased observatories. We used multi-year Evryscope data to search for high-amplitude (5% or greater) variable objects among 160,000 bright stars (mv&lt;14.5) near the South Celestial Pole. We developed a machine-learningbased spectral classifier to identify eclipse and transit candidates with M-dwarf or K-dwarf host stars, and potential low-mass secondary stars or gas-giant planets. The large amplitude transit signals from low-mass companions of smaller dwarf host stars lessens the photometric precision and systematics removal requirements necessary for detection, and increases the discoveries from long-term observations with modest light-curve precision among the faintest stars in the survey. The Evryscope is a robotic telescope array that observes the Southern sky continuously at 2-minute cadence, searching for stellar variability, transients, transits around exotic stars and other observationally challenging astrophysical variables. The multi-year photometric stability is better than 1% for bright stars in uncrowded regions, with a 3σ limiting magnitude of g = 16 in dark time. In this study, covering all stars 9<mv<14.5, in declinations -75° to -90°, and searching for high-amplitude variability, we recover 346 known variables and discover 303 new variables, including 168 eclipsing binaries. We characterize the discoveries and provide the amplitudes, periods, and variability type. A 1.7 RJ planet candidate with a late K-dwarf primary was found and the transit signal was verified with the PROMPT telescope network. Further follow-up revealed this object to be a likely grazing eclipsing binary system with nearly identical primary and secondary K5 stars. Radialvelocity measurements from the Goodman Spectrograph on the 4.1 meter SOAR telescope of the likely lowestmass targets reveal that six of the eclipsing binary discoveries are low-mass (.06-.37Me) secondaries with K-dwarf primaries, strong candidates for precision mass-radius measurements

    EVR-CB-001: An Evolving, Progenitor, White Dwarf Compact Binary Discovered with the Evryscope

    Get PDF
    We present EVR-CB-001, the discovery of a compact binary with an extremely low-mass (0.21 ± 0.05M o) helium core white dwarf progenitor (pre-He WD) and an unseen low-mass (0.32 ± 0.06M o) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low-mass He WDs are exotic objects (only about 0.2% of WDs are thought to be less than 0.3 M o), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (≈0.2R o) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (T eff = 18,500 ± 500 K), and surface gravity () solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-red-giant branch, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and T eff-log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive

    EVR-CB-004: An Inflated Hot Subdwarf O Star + Unseen WD Companion in a Compact Binary Discovered with the Evryscope

    Get PDF
    We present the discovery of EVR-CB-004, a close binary with a remnant stellar core and an unseen white dwarf (WD) companion. The analysis in this work reveals that the primary is potentially an inflated hot subdwarf (sdO) and more likely is a rarer post-blue horizontal branch (post-BHB) star. Post-BHBs are the short-lived shell-burning final stage of a blue horizontal star or hot subdwarf before transitioning to a WD. This object was discovered using Evryscope photometric data in a southern all-sky hot subdwarf variability survey. The photometric light curve for EVR-CB-004 shows multicomponent variability from ellipsoidal deformation of the primary and Doppler boosting, as well as gravitational limb darkening. The binary EVR-CB-004 is one of just a handful of known systems and has a long period (6.08426 hr) and large-amplitude ellipsoidal modulation (16.0% change in brightness from maximum to minimum) for these extremely close binary systems, while the properties of the primary make it a truly unique system. It also shows a peculiar low-amplitude (less than 1%) sinusoidal light-curve variation with a period that is a 1/3 resonance of the binary period. We tentatively identify this additional variation source as a tidally induced resonant pulsation, and we suggest follow-up observations that could verify this interpretation. From the evolutionary state of the system, its components, and its mass fraction, EVR-CB-004 is a strong merger candidate to form a single high-mass (1.2 M oË™) WD. It offers a glimpse into a brief phase of remnant core evolution and secondary variation not seen before in a compact binary

    Identifying the transcriptional response of cancer and inflammation-related genes in lung cells in relation to ambient air chemical mixtures in Houston, Texas

    Get PDF
    Atmospheric pollution represents a complex mixture of air chemicals that continually interact and transform, making it difficult to accurately evaluate associated toxicity responses representative of real-world exposure. This study leveraged data from a previously published article and reevaluated lung cell transcriptional response induced by outdoor atmospheric pollution mixtures using field-based exposure conditions in the industrialized Houston Ship Channel. The tested hypothesis was that individual and co-occurring chemicals in the atmosphere relate to altered expression of critical genes involved in inflammation and cancer-related processes in lung cells. Human lung cells were exposed at an air−liquid interface to ambient air mixtures for 4 h, with experiments replicated across 5 days. Real-time monitoring of primary and secondary gas-phase pollutants, as well as other atmospheric conditions, was simultaneously conducted. Transcriptional analysis of exposed cells identified critical genes showing differential expression associated with both individual and chemical mixtures. The individual pollutant identified with the largest amount of associated transcriptional response was benzene. Tumor necrosis factor (TNF) and interferon regulatory factor 1 (IRFN1) were identified as key upstream transcription factor regulators of the cellular response to benzene. This study is among the first to measure lung cell transcriptional responses in relation to real-world, gas-phase air mixtures
    • …
    corecore