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Abstract

Atmospheric pollution represents a complex mixture of air chemicals that continually interact and 

transform, making it difficult to accurately evaluate associated toxicity responses representative of 

real-world exposure. This study leveraged data from a previously published article and reevaluated 

lung cell transcriptional response induced by outdoor atmospheric pollution mixtures using field-

based exposure conditions in the industrialized Houston Ship Channel. The tested hypothesis was 

that individual and co-occurring chemicals in the atmosphere relate to altered expression of critical 

genes involved in inflammation and cancer-related processes in lung cells. Human lung cells were 

exposed at an air–liquid interface to ambient air mixtures for 4 h, with experiments replicated 

across 5 days. Real-time monitoring of primary and secondary gas-phase pollutants, as well as 

other atmospheric conditions, was simultaneously conducted. Transcriptional analysis of exposed 

cells identified critical genes showing differential expression associated with both individual and 

chemical mixtures. The individual pollutant identified with the largest amount of associated 

Eaves et al. Page 2

Environ Sci Technol. Author manuscript; available in PMC 2020 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcriptional response was benzene. Tumor necrosis factor (TNF) and interferon regulatory 

factor 1 (IRFN1) were identified as key upstream transcription factor regulators of the cellular 

response to benzene. This study is among the first to measure lung cell transcriptional responses in 

relation to real-world, gas-phase air mixtures.

Graphical Abstract

1. INTRODUCTION

Ambient air pollution exposure is a significant global public health problem, associated with 

an estimated 4.2 million premature deaths per year.1 Air pollution is a complex mixture that 

can be broadly categorized into gas-phase pollutants and particulate matter (PM). For both 

PM and gas-phase pollutants, associations between exposure and a diverse array of adverse 

health outcomes are generally well established,2,3 including impaired respiratory function,4-6 

multiple types of cancers,6-9 cardiovascular disease,10,11 and neurological impairment.12 

However, much remains to be elucidated regarding exact toxicological mechanisms 

underlying these associations, particularly regarding which individual and co-occurring gas-

phase chemicals in real-world atmospheric mixtures drive critical molecular-level changes.

A major challenge for studies evaluating toxicity of gas-phase air pollutants is that the 

atmosphere contains a large number of chemicals that are continuously transforming and 

interacting under the influence of co-occurring chemicals, PM and surrounding climatic 

conditions. Consequently, air pollution exposure conditions that are present in the real-world 

consist of a dynamic mixture spanning both freshly emitted species and secondary phase 

pollutants. For instance, alkanes can react with OH and other oxidants within the 

atmosphere, forming products that include diverse hazardous air pollutants (HAPs).13,14 As 

a specific example, n-butane, a common volatile organic compound produced from 

petrochemical industry emissions (namely, liquified petroleum gas), once oxidized, can 

result in butanone, acetaldehyde, butanal, 1-butyl nitrate, and 4-hydroxybutanal, and the 

subsequent oxidation of these products can result in the formation of formaldehyde and 

peroxyacetyl nitrate (PAN).15 To more fully understand the toxicity induced by gas-phase air 

pollutants, it is therefore advantageous to study cellular responses to complex gaseous 

mixtures that more accurately capture true atmospheric compositions than single-pollutant, 

lab-based approaches.
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Previous in vitro toxicogenomic studies have shown exacerbated cellular response to aged 

air pollution mixtures, compared to specific freshly emitted species using exposure 

atmospheres generated in the laboratory-setting.16-20 As an example, our prior work 

evaluating laboratory-generated air pollutant mixtures present in urban atmospheres found 

that primary emitted air pollutants altered the expression levels of 19 genes, while 

photochemically aged mixtures, which include both primary and secondary species, altered 

the expression of 37-fold more genes (n = 709).16 In taking the next step to corroborate these 

laboratory findings, the present study presents an approach to measuring gene expression 

responses of in vitro human lung cells exposed to a real-world ambient mixture of gas-phase 

pollutants while employing statistical methods common in genomics studies to evaluate the 

high-dimensional data. The tested hypothesis was that individual and co-occurring 

chemicals in the atmosphere would relate to altered expression of critical genes involved in 

inflammation and cancer-related processes in lung cells.

This study draws upon the Benzene and other Toxics Exposure (BEE-TEX) field campaign, 

which focused on gas-phase pollution in the Houston Ship Channel area, Houston, Texas.21 

Houston is located in Harris country, which contains the largest number of petrochemical 

facilities of all urban regions within the United States.22 In this study we aimed to: (1) 

expose human lung cells in vitro to ambient, gas-phase air pollution mixtures in the Houston 

Ship Channel using an in vitro exposure system designed to evaluate gaseous air pollutants, 

(2) conduct real-time monitoring of 26 freshly emitted and secondary gaseous species in the 

Ship Channel throughout the cell-exposure window, and (3) quantify transcript expression 

changes associated with individual and co-occurring air pollutant levels.

2. MATERIALS AND METHODS

2.1. In Vitro Exposure Conditions.

This study utilized data previously published in Vizuete et al. and added two new exposure 

days which were previously not available.21 Human epithelial lung cells (A549), 

representative of human alveolar type II cells, were exposed in vitro to ambient atmospheres 

on five different days: February 18, 20, 24, 25, and 26, 2015.23 Each exposure lasted 4 h, 

starting at 12:00 pm and ending at 4 pm Central Standard Time (CST). Exposures were 

conducted at the University of Houston (“UH”) field site, located in the Houston Ship 

Channel area, at the precise location of 9700 Manchester Street (29°43′00.18″ N, 

95°15′21.83″ W).

The Gas Phase In Vitro Exposure System (GIVES), an airtight, 8 L, modular cell-exposure 

chamber was used to carry out all exposures (Billups- Rothenberg, MIC-101TM, Del Mar, 

CA). The GIVES has been previously developed and tested by our team.16,18-21,24 It 

represents an exposure system developed to expose cells to gases within varying 

atmospheric conditions at an air–liquid interface (ALI) while maintaining cell viability. In 

this experiment the GIVES was set up in an incubator that housed the 8 L exposure chamber 

holding two Transwell plates of cells (Costar, Cambridge, MA). Air samples were drawn 

through a humidification unit to reach and maintain a minimum humidity of 60% prior to 

entering the GIVES to maintain cell viability. To collect ambient air samples, a Teflon 

sample line was connected to ambient air outside of the trailer with an inlet that was 3 m 
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above the ground and covered by an opened cap. Inside the instrument, a thermostat-

controlled heat source maintained a uniform temperature of 37 °C and a gas cylinder 

provided 5% CO2. It has been previously shown that there is ~9% deposition of 50 nm and 1 

μm diameter particles within the GIVES; however, the extent of particle deposition is so 

limited as to elicit no biomarker changes, making the GIVES a virtually gas-only sampler.
25,26

As negative and positive controls, a separate set of lung cells were exposed to clean air or 

ozone, respectively, using similar conditions as the aforementioned ambient exposures. For 

the clean air exposure, the GIVES was connected at the field site to medical grade clean air 

and a total of three exposures were completed on three separate days, Feb 17, 22, and 27 

2015. The ozone exposure was also completed at the field site using an ozone generator 

(Dynamic NO─NO2─O3 Calibrator Series 101, Thermo Electron Corporation) at ozone 

concentrations of 400 ppb on 2 days, 21 and 23 February 2015. After the control exposures, 

the cells were incubated for 16 h, after which supernatants were collected and used for 

cytotoxicity assessment, as further detailed below.

2.2. Ambient Measurements.

Ambient measurements were collected for the 5 days during which in vitro exposures 

occurred. Two locations were used to measure a total of 64 pollutants: the UH field site and 

the Texas Commission on Environmental Quality’s Continuous Ambient Monitoring Station 

(“TCEQ”) (Figure S1). To ensure adequate data quality, pollutants were included in the 

analysis if they were detected above detection limits on at least three of five experimental 

days and if their overall average concentration was above 0.1 ppbV. UH provided a mobile 

lab directly next to the field site where the GIVES was housed. The UH mobile lab was 

equipped with a proton-transfer-reaction mass spectrometer (PTRMS) and provided 

measurements for 17 air pollutants, 14 of which met inclusion criteria aforementioned. The 

instrument provided 5 min measurements of ozone and 3–6 s measurements for the other 13 

species listed in Table 1. UH reported a measurement deviation of benzene, toluene, and C2-

benzene of 5.2, 6.6, and 3.6%, respectively, and the measurement of the other species had a 

similar precision range. In addition to the UH data, we also used measurements provided by 

the surface network operated by the Texas Commission on Environmental Quality (TCEQ). 

Specifically, we downloaded data from the TCEQ website for the Continuous Ambient 

Monitoring Station (CAMS) 403 (29°44′1.00″ N, 95°15′27.00″ W) to obtain hourly 

averaged concentrations for an additional 47 pollutants, 12 of which met the aforementioned 

inclusion criteria.27 All air pollutant concentrations are reported in parts per billion by 

volume (ppbV) other than carbon monoxide, which is reported in parts per million by 

volume (ppmV).

2.3. Statistical Identification of Co-occurring Chemicals.

Clusters of atmospheric chemicals that correlated in concentration across experimental days 

were identified using a weighted co-expression approach, a method that is classically 

implemented in the genomics field. Specifically, weighted gene co-expression analysis 

(WGCNA) was employed which represents a method for describing the correlation patterns 

among different types of data profiles, historically across gene expression profiles;28 though 
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we have more recently broadened its application across integrated genomic and toxicity 

profiles.29 The statistical methods involved in WGCNA have been summarized elsewhere.
28,30 In brief, this experiment used the WGCNA R package (v1.68) to first calculate Pearson 

correlation coefficients for all pairwise comparisons between chemical concentrations, 

averaged daily across each 4 h exposure. The resulting Pearson correlation matrix was 

transformed into an adjacency matrix resulting in a weighted network describing connection 

strengths between chemicals. An unsigned network was constructed such that chemicals 

with both negative and positive correlations were grouped together. Modules (referred to as 

“clusters”) were then identified as groups of chemicals with concentrations that were highly 

interconnected in the constructed network and thus correlated across experimental days. To 

confirm general trends in co-occurrence, the concentrations of individual chemicals were 

also tested for correlation using the Spearman Rank Correlation test. All statistical analyses 

were conducted in R (v3.6.1).

2.4. Cell Culture.

Human A549 type II lung epithelial cells, derived from a human lung adenocarcinoma, were 

used for experimental consistency to ensure viability and facilitate comparison to other 

relevant studies.16-20,23,24,31-33 Cells were grown and maintained at the Baylor College of 

Medicine (BCM) according to standard protocol (ATCC, Manassas, VA) using Ham’s 

F-12K growth media containing 10% fetal bovine serum (FBS) and 1% penicillin and 

streptomycin, and plated onto 6-well Millicell plates consisting of 24-mm-diameter 

collagen-coated membranes with 0.4 μm pores (Trans-CLR; Costar, Cambridge, MA). Four 

hours prior to exposure, apical media were removed to create direct ALI culture conditions, 

and cells were supplied media through the basolateral compartment containing phenol red-

free F-12K nutrient mixture without FBS, consistent with our previous methods.16,17,24 

Immediately post-exposure, plates were taken to the BCM lab where cells were incubated 

for 16 h. This incubation period was selected to meet study logistical demands while still 

providing time for toxicological responses to occur, and is under the 24 h maximum allowed 

period that typically coincides with over confluency conditions, as has been described 

previously.21 The cells were then scraped and shipped on dry ice at −80 °C in TRIzol 

Reagent (Invitrogen Life Technologies, Carlsbad, CA), and the supernatants collected and 

shipped at −80 °C before being stored in −80 °C laboratory freezer at the University of 

North Carolina at Chapel Hill.

2.5. Cytotoxicity Assessment.

The cytotoxicity resulting from each of the ambient and control exposures was measured 

using the formazan dye-based Pierce lactate dehydrogenase (LDH) Cytotoxicity Assay Kit 

(Thermo Fisher Scientific). In this kit, the intensity of formazan dye is directly proportional 

to amount of LDH that is released from cells that are damaged. Samples were analyzed in 

triplicate wells according to manufacturer instructions, and the intensity of formazan dye 

was measured using the Thermo/LabSystems 352 Multiskan MS Microplate Reader. For 

each plate, one well was treated with Triton X-100 to kill all seeded cells as a positive 

control. This well was also evaluated in triplicate within the LDH assay and provided LDH 

quantification for 100% cell death as a reference. The relative cell death in the ambient, 
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clean air, and ozone exposure sample groups were analyzed for statistical significance using 

a t-test, considered statistically significant at p < 0.05.

2.6. RNA Extraction and Measurement of Gene Expression.

Total RNA was extracted from the exposed cell samples using the RNeasy RNA extraction 

kit, according to the manufacturer’s protocol (Qiagen, Valencia, CA). RNA (50 ng) extracted 

from each sample was evaluated using the nCounter Inflammation Panel, comprising 249 

genes, and the nCounter PanCancer Pathway Panel, comprising 730 genes (Nanostring 

Technologies). These panels were chosen as they represent major pathways and categories 

known to be activated by air pollutant mixtures from our previous studies.16 Exposures were 

completed with three to four replicates, and the sample with the highest quality RNA was 

used for the gene expression analysis.

2.7. Statistical Analysis of Gene Expression Profiles in Relation to Air Pollutants.

Nanostring nCounter count data were processed using R software, v3.6.1. The nCounter 

Inflammation panel and the nCounter PanCancer Pathway Panel were evaluated separately. 

For analysis of differential gene expression in response to ambient air pollution exposure, 

each of the five samples (from each of the 5 days) had 26 associated exposure 

measurements, representative of the 4 h mean concentration (in ppbV) between 12 and 4 pm 

of the 26 air pollutants included.

Count data were previously normalized within Partek Genomics Suite (Partek Inc., St. 

Louis, Missouri) in a two-step process as per the manufacturer’s specifications and as 

detailed previously.21,34 Specifically, positive control normalization was carried out which 

was followed by housekeeping gene normalization. The panels included 40 and 6 

housekeeping genes, for the PanCancer and Inflammation panel, respectively.

Normalized count data were then filtered to exclude universally lowly expressed transcripts, 

requiring that, for a gene to be included in the statistical analysis, >25% of samples have that 

gene expressed at signals above the overall median signal intensity of all genes. This 

minimizes bias of low-counts and follows our previous analyses.35-37 Principal components 

analysis (PCA), specifically calculation and visualization of principal components via the 

prcomp function, was used to evaluate data distributions and identify outliers, and no 

outliers were identified.

The DESeq2 package (v3.9) was then used to scale the count data using median signal 

intensity and to statistically evaluate the count data for differential expression associated 

with air pollutant exposure conditions.38,39 To account for sources of sample heterogeneity, 

such as batch effect or atmospheric conditions, Remove Unwanted Variation (RUV) analysis 

was carried out using the RUVg function in the RUV R package, which estimates factors of 

unwanted variation to be used as surrogate variables in the model.40,41 For the PanCancer 

panel, 40 housekeeping genes were used as control genes in the RUV procedure. For the 

Inflammation panel, empirical control genes were calculated from nondifferentially 

expressed genes, which act effectively as endogenous negative controls, as recommended 

when there are few housekeeping genes.40,41
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The DeSeq2 method for identifying differentially expressed genes utilizes a negative 

binomial generalized linear model. This method calculates shrunken logarithmic-fold 

changes in expression, which were then divided by their standard error values to produce z-

statistics. Resulting z-statistics were compared against standard normal distribution curves to 

generate Wald test p-values. To account for multiple testing, these p-values were then 

adjusted using the Benjamini and Hochberg (BH) procedure.42 In this analysis, logarithmic-

fold changes are representative of the average change in normalized gene expression for 

each one ppbV increase in air pollutant evaluated. Differentially expressed mRNAs were 

defined as those with a BH false discovery rate (FDR) ≤ 0.05.

2.8. Biological Network Analysis.

Network analysis was performed to identify enriched biological pathways among the 

mRNAs with differential expression if the air pollutant had five or more genes that were 

significantly differentially expressed. Additionally, network analysis was conducted on the 

aggregate of differentially expressed genes from cluster chemicals if the cluster contained 

more than five chemicals.

Utilizing the Ingenuity Pathway Analysis (Ingenuity Systems, Redwood City, CA), networks 

were constructed based on known protein–protein interactions and other molecular 

interactions to elucidate biological signaling involved in genomic response to individuals 

and mixtures of air pollutants. Networks were ranked based on right-tailed Fisher’s exact 

test p-values, indicating the likelihood of observing a network containing at least the same 

number of proteins encoded by the air pollutants-associated genes by chance within that 

network in comparison to random selections of other genes within the genome, as detailed 

previously.35,43

3. RESULTS

3.1. Exposure Characterization and Identification of Co-occurring Chemicals.

The mean, minimum and maximum concentrations for each pollutant and for atmospheric 

conditions across the exposure window of all five experimental days were calculated (Table 

1).

Both freshly emitted and oxidized pollutants were present. Carbon monoxide had the highest 

total mean concentration of 0.24 ppmV and acetonitrile had the lowest total mean 

concentration of 0.101 ppbV of the included chemicals. There was no precipitation over the 

5 days, the mean temperature was 53.0 °F, and the mean relative humidity was 59.0%. Daily 

and hourly measurements are summarized in Table S1. A summary of the original data has 

also been previously presented for three of the five experimental days.21

Five distinct clusters of co-occurring chemicals were identified using a weighted network 

analysis approach, which spanned from containing 2–12 chemicals (Table 1 and Figure 1). 

For example, cluster 1 contained ethylene, propylene, isobutane, styrene, 1-butene, hexane, 

isopentane, methanol, n-pentane, acetaldehyde, n-butane, p-xylene, and m-xylene. Within 

this cluster, there are significant positive correlations between ethylene, styrene, propylene, 

1-butene, isopentane, n-hexane, p-xylene, and m-xylene. These positive correlations are 
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plausible as these are all primary species associated with emissions generally known to 

originate from the oil and gas industry emissions. Their correlation suggests a common 

source, which is likely the many industrial sources located near the sampling site. Cluster 1 

also contains a significantly negative correlation between the aforementioned primary 

species and acetaldehyde, which is probable given that acetaldehyde is an oxidation product 

of alkanes and alkenes, such as n-butane. Cluster 2 includes both oxides of nitrogen (NOx) 

as well as products of photochemical oxidation. NOx sources and photochemical oxidation 

products have clustered likely because they have many sources and reflect regional 

influences. The remaining clusters contain a mixture of both primarily emitted species and 

secondary products like ozone. In nearly all of the clusters the primary emitted species are 

negatively correlated with secondary products, as expected. These clusters of air mixtures 

with significant correlations in both directions underscore the complex, dynamic mixture to 

which the cells were exposed and are suggestive of significant photochemical aging of the 

ambient mixture.

To validate the weighted network analysis, the 26 air pollutants were also evaluated for 

patterns of correlated concentrations across experimental days utilizing the Spearman rank 

correlation test (Table S2A,B and Figure S2). Chemicals within clusters from the weighted 

network analysis were also found in this separate Spearman rank correlation analysis to have 

significantly correlated concentrations.

3.4. Cytotoxicity Results.

All exposure conditions were evaluated for potential changes in cell death, based on the 

amount of LDH released in the supernatant in reference to the amount of LDH released upon 

treatment with cell death-inducing Triton X-100. Ambient air exposure conditions did not 

induce changes in cytotoxicity: no significant difference in cell death of the ambient air 

exposures compared to the incubator control was observed (p > 0.05). As a measure of 

quality assurance/quality control, ozone treatment was found to induce a significant increase 

in cell death compared to the incubator control (p = 0.005) (Figure S3), as expected based on 

previous experimentation.21 As an additional measure of quality assurance/quality control, 

the clean air treatment did not change the percentage of cell death significantly compared to 

the incubator control (p > 0.05) (Figure S3).

3.5. Gene Expression Modifications Associated with Air Pollutants.

Analysis of cancer- and inflammation-related gene (n = 979) expression in relation to 26 air 

pollutants identified differential expression of 88 unique genes in relation to 16 unique air 

pollutants (Table S3). Benzene exposure was associated with the most robust genomic 

response, with 78 differentially expressed genes. The four most significantly modified genes 

by any air pollutant were Complement C1r (C1R) (adjusted p value < 0.01), Interleukin 1 

Receptor type 1 (IL1R1) (adjusted p value < 0.01), Interleukin 1 Receptor Accessory Protein 

(IL1RAP) (adjusted p value < 0.01), and Fibronectin 1 (FN1) (adjusted p value < 0.01), all 

in response to benzene. Additionally, FN1 displayed modification to the highest number of 

air pollutants (n = 12), followed by BCL2 Associated X, Apoptosis Regulator (BAX), and 

DNA Polymerase Delta 4, Accessory Subunit (POLD4) (n = 4). The 16 air chemicals that 

were associated with at least one significantly differentially expressed gene include 
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acetaldehyde, butane, butene, hexane, isobutane, isopentane, pentane, propylene, styrene, 

xylene, acetone, methyl ethyl ketone, nitrogen dioxide, benzene, toluene, and ethane. Of 

these 16 air chemicals, 8 are in cluster 1. In sum, cluster 1 chemicals and benzene induce 

notable changes in gene expression of inflammatory- and cancer-related genes. Perhaps 

surprisingly, ozone was not found to initiate differential expression of any genes, although 

this may be due to the relatively low concentrations recorded (all measurements were below 

the NAAQS standard of 70 ppb).44

3.6. Pathway Enrichment of Genes with Modified Expression.

Based on the a priori defined cut-off of 5 or more genes with differential expression based 

on exposure, benzene was identified as a candidate for pathway analysis. Genes 

differentially expressed in response to exposure from chemicals in cluster 1 were also 

analyzed because cluster 1 contained over 5 air chemicals, the a priori defined cut-off.

Among genes that were differentially expressed in response to benzene, tumor necrosis 

factor (TNF) and interferon regulatory factor 1 (IRF1) were identified as top upstream 

regulators with p-values of p = 1.09 × 10−6 and p = 5.7 × 10−9, respectively. Three 

significant molecular networks were identified among benzene-responsive genes (Figure 

2A-C). The two most significant of these networks contain IRF1 and TNF as central nodes, 

highlighting the role of these regulators in the genomic response to benzene. The third of 

these molecular networks contains tumor protein p53 (TP53) as a central node. A number of 

other genes known for their roles in regulating cancer-processes and inflammation-process 

are included across these networks including Nuclear Factor Kappa B Subunit 1 (NFKB1) 

and Transforming Growth Factor β 1 (TGFB1). In genes differentially expressed in response 

to chemicals in cluster 1, a significant molecular network with TP53 as a central node was 

identified (Figure 2D).

4. DISCUSSION

In the present study, we set out to evaluate biological response of lung cells to ambient 

gaseous air pollutant mixtures using an in vitro exposure system coupled with real-time 

monitoring of outdoor exposures and mixtures modeling approaches. This study is unique 

because the composition of ambient air was simultaneously assessed alongside lung cell 

genomic responses resulting from these direct exposures. There were three major findings. 

First, we demonstrate that field-based, in vitro studies evaluating real-world atmospheric 

conditions are feasible and provide critical information toward understanding biological 

responses associated with air pollution mixtures, especially when combined with statistical 

methods adapted for high-dimensional data. Second, the most robust genomic response 

observed within lung cells was identified in association with benzene concentrations and 

found to be enriched for signaling patterns related to IRF1, TNF, and TP53. Third, similar 

pathway-level perturbations were identified in relation to a mixture of co-occurring 

chemicals (referred to as cluster 1 herein).

One of the greatest challenges for understanding the mechanisms driving air pollution 

toxicity is generating exposure scenarios that accurately reflect real-world atmospheres.21 In 

reality, humans are exposed simultaneously to complex mixtures of air pollutants. In fact, in 
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the United States there are 187 (HAPs) that the EPA is required to control.45 Despite 

individuals likely being exposed simultaneously to these HAPs and other air chemicals, the 

current paradigm is to assess toxicity in laboratory settings one pollutant at a time. Doing so 

likely underestimates the impact of air pollution as there is growing recognition of the 

synergistic adverse health impacts of multipollutant exposures.46-48 Laboratory-based 

studies have shown that mixtures generate an amplified inflammatory response in lung cells.
16,20,49 Yet, to date, translating these laboratory-based studies to field-based in vitro studies 

that more accurately capture real-world mixtures has been limited by logistical and 

statistical challenges, such as adjusting for background concentrations and the number of 

pollutants being quantified.18,20 To our knowledge, only a few other studies have exposed 

lung cell cultures at the ALI to ambient air, including prior work published using the data 

presented herein.21,50,51 Bisig et al. used a multicellular lung model and a mobile cell-

exposure system to evaluate seasonal variation in toxicity of ambient air.50 They found 

winter air to have an exacerbated effect in terms of expression of three pro inflammatory 

genes assessed which were also validated through ELISA.50 Gualtieri et al. specifically 

evaluated the effects of PM using ambient exposure at the ALI interface of BEAS-2B cells.
51 Here, we add to these studies and show that, with the deployment of GIVES, field-based 

in vitro exposure is feasible and can yield highly informative data. As the discipline shifts to 

a multipollutant-based approach, this study provides an effective design to achieve these 

goals.

A benefit of employing a multipollutant approach is that evaluation of simultaneous 

exposures can elucidate the primary drivers of the biological response. Among the 26 

chemicals evaluated in the present study, benzene demonstrated the most robust genomic 

response, with 78 genes identified as responsive. Benzene, which initiated genomic 

responses enriched for IRF1, TNF, and TP53 signaling pathways, is a recognized HAP with 

carcinogenic properties and long-term exposure to benzene is associated with the 

development of cancers, including leukemia, and cardiovascular disease.52-55 Of the 78 

benzene-responsive genes, the most significant responses were observed by C1R, IL1R1, 
IL1RAP, and FN1. Overall, the 78 genes demonstrated enrichment in pathway signaling 

involving IRF1, TNF, and TP53, which have each been separately associated with cancer or 

inflammation in the lung.56-62 For example, TNF is a well-recognized mediator of the 

systemic inflammatory response caused by persistent air pollutant exposure.60,61 

Additionally, IRF1 is also known to play key functions in cancer progression, is involved in 

suppression of immunity to respiratory infections exacerbated by air pollution exposure and 

there is evidence that it regulates the autophagic response to lung injury.57,62-66 Lastly, TP53 
is one of the most recognized oncogenes, playing a key role in tumor suppression, and TP53 
mutations are frequently studied with regard to cancer risk.58,59,67 In fact, TP53 has been 

associated with PM-induced apoptosis in alveolar epithelial cells during the pathogenesis of 

lung cancer.68 In this study, we show that benzene most potently activates inflammatory- and 

cancer- related genes associated with adverse health outcomes, even among a 

photochemically aged mixture, and should continue to be a priority public health concern.

Field-based in vitro studies such as the present study not only better capture true human 

exposure, but they yield high-dimensional data, ideal for employing new analytic 

approaches. Through a combination of a field-based design and a bioinformatic analytic 
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approach, co-occurring chemicals within the complex atmospheric mixture were identified. 

Clusters were classified as groups of chemicals that were highly interconnected in a 

weighted network analysis. Cluster 1, containing ethylene, propylene, isobutane, styrene, 1-

butene, hexane, isopentane, methanol, n-pentane, acetaldehyde, n-butane, p-xylene, and m-

xylene, was associated with the largest number of gene-level expression alterations. Similar 

to benzene exposure, genes responsive to cluster 1 chemicals demonstrated a genomic 

response that was enriched for FN1 and TP53. Other studies that have also investigated 

health effects of air pollutant mixtures have utilized varied analytical approaches; however, it 

is generally agreed that no common analytical approach yet exists for analyzing such high-

dimensional air pollution data.46 A multipollutant approach involves estimating the total 

health effect associated with the exposure to multiple pollutants, which, while more 

representative of real-world human exposure, poses unique analytical challenges. 

Traditionally, interaction terms in regression models have been used to asses divergence 

from additive effects in the case of joint exposures; however, correlation among air 

pollutions reduces the capacity of regression models to capture the total effect.46 Other 

approaches involving data reduction techniques have been employed to generate a set of key 

predictors of outcomes of interest, utilizing principal components analysis, regression 

shrinkage or penalization methods.46 Approaches developed in the genomics field to handle 

high-dimensional data may be of particular use to characterizing high-dimension air 

pollution data.46 The weighted network approach employed is commonly applied in 

genomics and here we show that its use in air pollution studies can yield important 

information about mixtures of exposures and biological response to co-occurring chemicals.
28 As the EPA and scientific community move toward a multipollutant approach, 

development of mixtures-based techniques for in vitro studies of air pollutant mixtures will 

be important to continue to develop alongside the field-laboratory apparatus.69,70

While this study demonstrates the exciting potential of in vitro field-based studies combined 

with mixtures modeling approaches, it is not without limitations. First, while the A549 cell 

line is a standard model for studying lung epithelium, it is a tumor cell line that responds 

differently than a primary cell line, which may affect the toxicogenomic findings presented 

herein. There is evidence that A549 cells are more vulnerable to inflammatory response to 

ambient air than a multicellular model.71 However, its common use allows for ease of 

comparison to other relevant studies.16-20,24,31-33 Second, while this study is more 

representative of real-world exposures than single-pollutant assessments, it does not capture 

the important effects that PM can have on air pollution induced cellular changes in real-

world exposures and it studied only 4 h exposure windows, which is not necessarily 

representative of chronic exposure. Future studies could perhaps replicate the experimental 

setup while analyzing more air pollutants, integrating methods to evaluate PM at the air–

liquid interface (as demonstrated by Gualtieri et al.) or exposing cells for a longer time 

period to more accurately reflect chronic exposure.51 Third, we were unable to conduct 

further validation of the results at the cytokine or protein level. Finally, given the inherent 

challenges of extrapolating in vitro findings to the entire human body system, future 

research could incorporate alternative cell models for a wider biological analysis of how air 

toxicants affect human health. Some relevant models that should be considered for 

incorporation include lung-on-a-chip or three-dimensional (3D) tissue models.72

Eaves et al. Page 12

Environ Sci Technol. Author manuscript; available in PMC 2020 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, in this study, we directly evaluated lung cell biological response using in vitro 

methods within an environment that exposed cells to ambient gas-phase air pollutants. This 

research method created a scenario that was highly reflective of real-world conditions. It was 

hypothesized that individual and co-occurring chemicals in the atmosphere related to altered 

expression of critical genes involved in cancer-related processes within lung cells. Clusters 

of chemicals were identified and correlated with gene expression levels of inflammation- 

and cancer-related genes. Among several clusters, benzene was a prominent pollutant that 

was enriched for relevant pathway signaling of three genes (FN1, TNF, and TP53) that have 

been shown to be associated with lung cancer. These findings contribute to understanding 

how individual and combinations of gaseous air pollutants alter biologic pathways on the 

exposure-disease continuum.
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Figure 1. 
Plots of the average concentration of air pollutant in the 4 h exposure windows for each of 

the exposure days organized by clusters of co-occurring chemicals. Pollutant concentrations 

are standardized for visualization.
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Figure 2. 
Network of genes significantly differentially expressed in response to benzene exposure (A, 

B, C) and cluster 1 chemicals (D).
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Table 1.

Descriptive Statistics for the (A) Included Air Pollutants (in ppbV, Unless Noted) and (B) Atmospheric 

Conditions

measure mean min max cluster
monitoring

data location

(A) Air Pollutants

methanol 1.243 0.245 2.217 cluster 1 UH field site

acetonitrile 0.101 0.062 0.145 cluster 2 UH field site

acetaldehyde 0.669 0.325 0.913 cluster 1 UH field site

acetone 1.505 0.781 2.150 cluster 2 UH field site

benzene 0.225 0.157 0.346 cluster 3 UH field site

toluene 0.305 0.187 0.490 cluster 3 UH field site

C2 benzenes 0.288 0.207 0.350 cluster 4 UH field site

C3 benzenes 0.241 0.094 0.413 cluster 4 UH field site

styrene 0.137 0.065 0.383 cluster 1 UH field site

methyl ethyl ketone 0.236 0.142 0.407 cluster 2 UH field site

carbon monoxide (ppmV) 0.240 0.200 0.300 cluster 3 UH field site

nitric oxide 5.004 0.040 10.100 cluster 2 UH field site

nitrogen dioxide 13.212 5.140 21.200 cluster 2 UH field site

ozone 26.000 16.400 34.200 cluster 3 UH field site

ethane 8.836 6.856 10.786 cluster 5 TCEQ

ethylene 0.825 0.470 1.480 cluster 1 TCEQ

propane 4.846 3.748 6.258 cluster 5 TCEQ

propylene 0.365 0.140 1.026 cluster 1 TCEQ

isobutane 1.265 0.784 2.944 cluster 1 TCEQ

n-butane 3.068 2.040 6.164 cluster 1 TCEQ

acetylene 0.496 0.434 0.574 cluster 4 TCEQ

1-butene 0.169 0.074 0.492 cluster 1 TCEQ

isopentane 1.030 0.636 2.076 cluster 1 TCEQ

n-pentane 0.692 0.526 1.148 cluster 1 TCEQ

n-hexane 0.232 0.152 0.442 cluster 1 TCEQ

m/p-xylene 0.115 0.078 0.168 cluster 1 TCEQ

(B) Atmospheric Conditions

wind speed (MPH) 9.11 4.70 18.02 TCEQ

outdoor temperature (°F) 52.94 39.86 68.10 TCEQ

dew point temperature (°F) 37.63 28.40 58.22 TCEQ

relative humidity (%) 58.95 30.96 75.26 TCEQ

solar radiation (W/m2) 0.53 0.21 0.82 TCEQ

ultraviolet radiation (mW/cm2) 0.02 0.01 0.04 TCEQ

barometric pressure (millibar) 1018.680 1010.48 1026.14 TCEQ

precipitation (millimeters) 0 0 0 TCEQ
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