356 research outputs found

    Incontinence-specific quality of life measures used in trials of treatments for female urinary incontinence: a systematic review.

    Get PDF
    This systematic review examined the use of incontinence-specific QOL measures in clinical trials of female incontinence treatments, and systematically evaluated their quality using a standard checklist. Of 61 trials included in the review, 58 (95.1%) used an incontinence-specific QOL measure. The most commonly used were IIQ (19 papers), I-QoL (12 papers) and UDI (9 papers). Eleven papers (18.0%) used measures which were not referenced or were developed specifically for the study. The eight QOL measures identified had good clinical face validity and measurement properties. We advise researchers to evaluate carefully the needs of their specific study, and select the QOL measure that is most appropriate in terms of validity, utility and relevance, and discourage the development of new measures. Until better evidence is available on the validity and comparability of measures, we recommend that researchers consider using IIQ or I-QOL with or without UDI in trials of incontinence treatments

    Supergravity Inflation Free from Harmful Relics

    Get PDF
    We present a realistic supergravity inflation model which is free from the overproduction of potentially dangerous relics in cosmology, namely moduli and gravitinos which can lead to the inconsistencies with the predictions of baryon asymmetry and nucleosynthesis. The radiative correction turns out to play a crucial role in our analysis which raises the mass of supersymmetry breaking field to intermediate scale. We pay a particular attention to the non-thermal production of gravitinos using the non-minimal Kahler potential we obtained from loop correction. This non-thermal gravitino production however is diminished because of the relatively small scale of inflaton mass and small amplitudes of hidden sector fields.Comment: 10 pages, revtex, 1 eps figure, references added, conclusion section expande

    Neutrino properties and the decay of the lightest supersymmetric particle

    Get PDF
    Supersymmetry with broken R-parity can explain the neutrino mass squared differences and mixing angles observed in neutrino oscillation experiments. In the minimal model, where R-parity is broken only by bilinear terms, certain decay properties of the lightest supersymmetric particle (LSP) are correlated with neutrino mixing angles. Here we consider charginos, squarks, gluinos and sneutrinos being the LSP and calculate their decay properties in bilinear R-parity breaking supersymmetry. Together with the decays of charged scalars and neutralinos calculated previously this completes the proof that bilinear R-parity breaking as the source of neutrino masses will be testable at future colliders. Moreover, we argue that in case of GMSB, the decays of the NLSP can be used to test the model.Comment: 15 pages, 8 figure

    Non-thermal leptogenesis with almost degenerate superheavy neutrinos

    Get PDF
    We present a model with minimal assumptions for non-thermal leptogenesis with almost degenerate superheavy right-handed neutrinos in a supersymmetric set up. In this scenario a gauge singlet inflaton is directly coupled to the right-handed (s)neutrinos with a mass heavier than the inflaton mass. This helps avoiding potential problems which can naturally arise otherwise. The inflaton decay to the Standard Model leptons and Higgs, via off-shell right-handed (s)neutrinos, reheats the Universe. The same channel is also responsible for generating the lepton asymmetry, thus requiring no stage of preheating in order to excite superheavy (s)neutrinos. The suppressed decay rate of the inflaton naturally leads to a sufficiently low reheat temperature, which in addition, prevents any wash out of the yielded asymmetry. We will particularly elaborate on important differences from leptogenesis with on-shell (s)neutrinos. It is shown that for nearly degenerate neutrinos a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.Comment: 10 revtex pages, 2 figure (uses axodraw). The derivation of the asymmetry parameter for the general case and one figure added. Final version to appear in Phys. Rev.

    Implications of the HERA Events for the R-Parity Breaking SUSY Signals at Tevatron

    Get PDF
    The favoured R-parity violating SUSY scenarios for the anomalous HERA events correspond to top and charm squark production via the λ131\lambda'_{131} and λ121\lambda'_{121} couplings. In both cases the corresponding electronic branching fractions of the squarks are expected to be 1\ll 1. Consequently the canonical leptoquark signature is incapable of probing these scenarios at the Tevatron collider over most of the MSSM parameter space. We suggest alternative signatures for probing them at Tevatron, which seem to be viable over the entire range of MSSM parameters.Comment: 20 pages Latex file with 4 ps files containing 4 figure

    Probing neutrino properties with charged scalar lepton decays

    Get PDF
    Supersymmetry with bilinear R-parity violation provides a predictive framework for neutrino masses and mixings in agreement with current neutrino oscillation data. The model leads to striking signals at future colliders through the R-parity violating decays of the lightest supersymmetric particle. Here we study charged scalar lepton decays and demonstrate that if the scalar tau is the LSP (i) it will decay within the detector, despite the smallness of the neutrino masses, (ii) the relative ratio of branching ratios Br({tilde tau}_1 --> e sum nu_i)/ Br({tilde tau}_1 --> mu sum nu_i) is predicted from the measured solar neutrino angle, and (iii) scalar muon and scalar electron decays will allow to test the consistency of the model. Thus, bilinear R-parity breaking SUSY will be testable at future colliders also in the case where the LSP is not the neutralino.Comment: 24 pages, 8 ps figs Report-no.: IFIC/02-33 and ZU-TH 11/0

    Suppressing the μ\mu and neutrino masses by a superconformal force

    Get PDF
    The idea of Nelson and Strassler to obtain a power law suppression of parameters by a superconformal force is applied to understand the smallness of the μ\mu parameter and neutrino masses in R-parity violating supersymmetric standard models. We find that the low-energy sector should contain at least another pair of Higgs doublets, and that a suppression of \lsim O(10^{-13}) for the μ\mu parameter and neutrino masses can be achieved generically. The superpotential of the low-energy sector happens to possess an anomaly-free discrete R-symmetry, either R3R_3 or R6R_6, which naturally suppresses certain lepton-flavor violating processes, the neutrinoless double beta decays and also the electron electric dipole moment. We expect that the escape energy of the superconformal sector is \lsim O(10) TeV so that this sector will be observable at LHC. Our models can accommodate to a large mixing among neutrinos and give the same upper bound of the lightest Higgs mass as the minimal supersymmetric standard model.Comment: 24 page

    Probing R-parity violating models of neutrino mass at the Tevatron via top Squark decays

    Full text link
    We have estimated the limiting branching ratio of the R-parity violating (RPV) decay of the lighter top squark, \tilde t_1 \ar l^+ d (l=el=e or μ\mu and d is a down type quark of any flavor), as a function of top squark mass(\MST) for an observable signal in the di-lepton plus di-jet channel at the Tevatron RUN-II experiment with 2 fb1^{-1} luminosity. Our simulations indicate that the lepton number violating nature of the underlying decay dynamics can be confirmed via the reconstruction of \MST. The above decay is interesting in the context of RPV models of neutrino mass where the RPV couplings (λi3j\lambda'_{i3j}) driving the above decay are constrained to be small (\lsim 10^{-3} - 10^{-4} ). If t~1\tilde t_1 is the next lightest super particle - a theoretically well motivated scenario - then the RPV decay can naturally compete with the R-parity conserving (RPC) modes which also have suppressed widths. The model independent limiting BR can delineate the parameter space in specific supersymmetric models, where the dominating RPV decay is observable and predict the minimum magnitude of the RPV coupling that will be sensitive to Run-II data. We have found it to be in the same ballpark value required by models of neutrino mass, for a wide range of \MST. A comprehensive future strategy for linking top squark decays with models of neutrino mass is sketched.Comment: 28 pages, 14 Figure

    Solar Neutrino Masses and Mixing from Bilinear R-Parity Broken Supersymmetry: Analytical versus Numerical Results

    Get PDF
    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between approximate and full numerical calculation, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle MSW solution (LMA-MSW), now strongly favoured by the recent KamLAND reactor neutrino data.Comment: 34 pages, 14 ps figs, some clarifying comments adde

    Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model

    Full text link
    We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM). The formalism for evaluation of branching fractions for the SL LFV charged-lepton decays with one or two pseudoscalar mesons, or one vector meson in the final state, is given. Previous amplitudes for the SL LFV charged-lepton decays in MSSM are improved, for instance the γ\gamma-penguin amplitude is corrected to assure the gauge invariance. The decays are studied not only in the model-independent formulation of the theory in the frame of MSSM, but also within the frame of the minimal supersymmetric SO(10) model within which the parameters of the MSSM are determined. The latter model gives predictions for the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model are appropriately fixed to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV leptonic and SL decay processes assuming the minimal supergravity scenario. A very detailed numerical analysis is done to constrain the MSSM parameters. Numerical results for SL LFV processes are given, for instance for tau -> e (mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e (mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure
    corecore