2,402 research outputs found
Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions
The role of neutron transfers is investigated in the fusion process below the
Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A
full coupled-channel calculation of the fusion excitation functions has been
performed for both systems by using multi-neutron transfer coupling for the
more neutron-rich reaction. The enhancement of fusion cross sections for
32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations
including the coupling of the neutron-transfer channels following the Zagrebaev
semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr
fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint
Malo, France, 2-6 mai 201
Interpreting Helioseismic Structure Inversion Results of Solar Active Regions
Helioseismic techniques such as ring-diagram analysis have often been used to
determine the subsurface structural differences between solar active and quiet
regions. Results obtained by inverting the frequency differences between the
regions are usually interpreted as the sound-speed differences between them.
These in turn are used as a measure of temperature and magnetic-field strength
differences between the two regions. In this paper we first show that the
"sound-speed" difference obtained from inversions is actually a combination of
sound-speed difference and a magnetic component. Hence, the inversion result is
not directly related to the thermal structure. Next, using solar models that
include magnetic fields, we develop a formulation to use the inversion results
to infer the differences in the magnetic and thermal structures between active
and quiet regions. We then apply our technique to existing structure inversion
results for different pairs of active and quiet regions. We find that the
effect of magnetic fields is strongest in a shallow region above 0.985R_sun and
that the strengths of magnetic-field effects at the surface and in the deeper
(r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface
magnetic field the smaller the magnetic effects in the deeper layers, and vice
versa. We also find that the magnetic effects in the deeper layers are the
strongest in the quiet regions, consistent with the fact that these are
basically regions with weakest magnetic fields at the surface. Because the
quiet regions were selected to precede or follow their companion active
regions, the results could have implications about the evolution of magnetic
fields under active regions.Comment: Accepted for publication in Solar Physic
New Results on Standard Solar Models
We describe the current status of solar modelling and focus on the problems
originated with the introduction of solar abundance determinations with low CNO
abundance values. We use models computed with solar abundance compilations
obtained during the last decade, including the newest published abundances by
Asplund and collaborators. Results presented here make focus both on
helioseismic properties and the models as well as in the neutrino fluxes
predictions. We also discuss changes in radiative opacities to restore
agreement between helioseismology, solar models, and solar abundances and show
the effect of such modifications on solar neutrino fluxes.Comment: 9 pages. Review talk presented at "Synergies between solar and
stellar modelling", Rome, June 2009. To be published by Astrophysics and
Space Scienc
A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion
AbstractConsidering the present limitation of the need for external parameters to describe the nucleus–nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca+Ca, S,Ca+Sn, and S,Ca+Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for S32,Ca40+Zr94 shows an unexpected larger enhancement than S32,Ca40+Zr96 despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics
Haldane-Gapped Spin Chains as Luttinger Liquids: Correlation Functions at Finite Field
We study the behavior of Heisenberg, antiferromagnetic, integer-spin chains
in the presence of a magnetic field exceeding the attendant spin gap. For
temperatures much smaller than the gap, the spin chains exhibit Luttinger
liquid behavior. We compute exactly both the corresponding Luttinger parameter
and the Fermi velocity as a function of magnetic field. This enables the
computation of a number of correlators from which we derive the spin
conductance, the expected form of the dynamic structure factor relevant to
inelastic neutron scattering experiments, and NMR relaxation rates. We also
comment upon the robustness of the magnetically induced gapless phase both to
finite temperature and finite couplings between neighbouring chains.Comment: 32 pages, 8 figures; published version includes additions discussing
the robustness of the magnetically induced gapless phase to ordering between
chains as well as the relationship between the spin-1 chains and spin-1/2
ladders in the presence of a magnetic fiel
Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of Hot Jupiters
(abbreviated) We extend the theory of close encounters of a planet on a
parabolic orbit with a star to include the effects of tides induced on the
central rotating star. Orbits with arbitrary inclination to the stellar
rotation axis are considered. We obtain results both from an analytic treatment
and numerical one that are in satisfactory agreement. These results are applied
to the initial phase of the tidal circularisation problem. We find that both
tides induced in the star and planet can lead to a significant decrease of the
orbital semi-major axis for orbits having periastron distances smaller than 5-6
stellar radii (corresponding to periods days after the
circularisation has been completed) with tides in the star being much stronger
for retrograde orbits compared to prograde orbits. We use the simple Skumanich
law for the stellar rotation with its rotational period equal to one month at
the age of 5Gyr. The strength of tidal interactions is characterised by
circularisation time scale, defined as a time scale of evolution of
the planet's semi-major axis due to tides considered as a function of orbital
period after the process of tidal circularisation has been completed.
We find that the ratio of the initial circularisation time scales corresponding
to prograde and retrograde orbits is of order 1.5-2 for a planet of one Jupiter
mass and four days. It grows with the mass of the planet, being
of order five for a five Jupiter mass planet with the same . Thus, the
effect of stellar rotation may provide a bias in the formation of planetary
systems having planets on close orbits around their host stars, as a
consequence of planet-planet scattering, favouring systems with retrograde
orbits. The results may also be applied to the problem of tidal capture of
stars in young stellar clusters.Comment: to be published in Celestial Mechanics and Dynamical Astronom
Effect of dissipation and measurement on a tunneling system
We consider a parametrically driven Kerr medium in which the pumping may be sinusoidally varied. It has been previously found that this system exhibits coherent tunneling between two fixed points which can be either enhanced or suppressed by altering the driving frequency and strength. We numerically investigate the dynamics when damping is included. This is done both by solving a master equation and using the quantum-trajectory method. In the latter case it is also possible to model the result of a continuous heterodyne measurement of the cavity output. The dissipation destroys the coherences which give rise to the tunneling, causing the sinusoidal oscillation of the mean to give way to a stochastic jumping between the fixed points, manifested as a random telegraph signal. In the quantum-trajectory picture we show that the coherences responsible for tunneling are an exponentially decreasing function of the signal-to-noise ratio for heterodyne measurements. However, evidence of both the bare tunneling rate and the driving modified tunneling rate are still apparent in the random telegraph signal
Interface electronic states and boundary conditions for envelope functions
The envelope-function method with generalized boundary conditions is applied
to the description of localized and resonant interface states. A complete set
of phenomenological conditions which restrict the form of connection rules for
envelope functions is derived using the Hermiticity and symmetry requirements.
Empirical coefficients in the connection rules play role of material parameters
which characterize an internal structure of every particular heterointerface.
As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and 4-band Kane models. The conditions
for the existence of Tamm-like localized interface states are established. It
is shown that a nontrivial form of the connection rules can also result in the
formation of resonant states. The most transparent manifestation of such states
is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.
Self-assembly of quantum dots: effect of neighbor islands on the wetting in coherent Stranski-Krastanov growth
The wetting of the homogeneously strained wetting layer by dislocation-free
three-dimensional islands belonging to an array has been studied. The array has
been simulated as a chain of islands in 1+1 dimensions. It is found that the
wetting depends on the density of the array, the size distribution and the
shape of the neighbor islands. Implications for the self-assembly of quantum
dots grown in the coherent Stranski-Krastanov mode are discussed.Comment: 4 pages, 6 figures, accepted version, minor change
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
- …
