37 research outputs found

    Strong floristic distinctiveness across Neotropical successional forests

    Get PDF
    Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≀20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained

    Narrowing the critical region within 11q24-qter for hypoplastic left heart and identification of a candidate gene, JAM3, expressed during cardiogenesis

    No full text
    Hypoplastic left heart is a severe human congenital heart defect characterized by left ventricular hypoplasiawith aortic and mitral valve atresia. A genetic etiology is indicated by an association of the hypoplastic left heart phenotype with terminal 11q deletions that span approximately 20 Mb (distal to FRA11B in 11q23). Here we define the breakpoints in four patients with heart defects in association with distal 11q monosomy and refine the critical region to an approximately 9-Mb region distal to D11S1351. Within this critical region we have identified JAM3, a member of the junction adhesion molecule family, as a strong candidate gene for the cardiac phenotype on the basis that it is expressed during human cardiogenesis in the structures principally affected in hypoplastic left heart
    corecore