2,482 research outputs found
Isotope effects and possible pairing mechanism in optimally doped cuprate superconductors
We have studied the oxygen-isotope effects on T_{c} and in-plane penetration
depth \lambda_{ab}(0) in an optimally doped 3-layer cuprate
Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10+y} (T_{c} \sim 107 K). We find a small
oxygen-isotope effect on T_{c} (\alpha_{O} = 0.019), and a substantial effect
on \lambda_{ab} (0) (\Delta \lambda_{ab} (0)/\lambda_{ab} (0) = 2.5\pm0.5%).
The present results along with the previously observed isotope effects in
single-layer and double-layer cuprates indicate that the isotope exponent
\alpha_{O} in optimally doped cuprates is small while the isotope effect on the
in-plane effective supercarrier mass is substantial and nearly independent of
the number of the CuO_{2} layers. A plausible pairing mechanism is proposed to
explain the isotope effects, high-T_{c} superconductivity and tunneling spectra
in a consistent way.Comment: 5 pages, 4 figure
The Capsicum terpenoid biosynthetic module is affected by spider-mite herbivory
In response to herbivory, Capsicum annuum leaves adapt their specialized metabolome that may protect the plant against herbivore feeding either directly or indirectly through volatile metabolites acting as cues for natural enemies of the herbivore. The volatile blend of spider-mite infested leaves differs from non-challenged leaves predominantly by a higher contribution of mono- and sesquiterpenes. In addition to these terpenoids released into the headspace, the terpenoid composition of the leaves alters upon herbivory. All this suggests an important role for terpenoids and their biosynthetic machinery in the defence against herbivory. Here, we show that the C. annuum genome contains a terpene synthase (TPS) gene family of 103 putative members of which structural analysis revealed that 27 encode functional enzymes. Transcriptome analysis showed that several TPS loci were differentially expressed upon herbivory in leaves of two C. annuum genotypes, that differ in susceptibility towards spider mites. The relative expression of upstream biosynthetic genes from the mevalonate and the methylerythritol phosphate pathway also altered upon herbivory, revealing a shift in the metabolic flux through the terpene biosynthetic module. The expression of multiple genes potentially acting downstream of the TPSs, including cytochrome P450 monooxygenases, UDP-glucosyl transferases, and transcription factors strongly correlated with the herbivory-induced TPS genes. A selection of herbivory-induced TPS genes was functionally characterized through heterologous expression and the products that these enzymes catalysed matched with the volatile and non-volatile terpenoids induced in response to herbivory
Drinfeld Twists and Algebraic Bethe Ansatz of the Supersymmetric t-J Model
We construct the Drinfeld twists (factorizing -matrices) for the
supersymmetric t-J model. Working in the basis provided by the -matrix (i.e.
the so-called -basis), we obtain completely symmetric representations of the
monodromy matrix and the pseudo-particle creation operators of the model. These
enable us to resolve the hierarchy of the nested Bethe vectors for the
invariant t-J model.Comment: 23 pages, no figure, Latex file, minor misprints are correcte
Large oxygen-isotope effect in Sr_{0.4}K_{0.6}BiO_{3}: Evidence for phonon-mediated superconductivity
Oxygen-isotope effect has been investigated in a recently discovered
superconductor Sr_{0.4}K_{0.6}BiO_{3}. This compound has a distorted perovskite
structure and becomes superconducting at about 12 K. Upon replacing ^{16}O with
^{18}O by 60-80%, the T_c of the sample is shifted down by 0.32-0.50 K,
corresponding to an isotope exponent of alpha_{O} = 0.40(5). This isotope
exponent is very close to that for a similar bismuthate superconductor
Ba_{1-x}K_{x}BiO_{3} with T_c = 30 K. The very distinctive doping and T_c
dependencies of alpha_{O} observed in bismuthates and cuprates suggest that
bismuthates should belong to conventional phonon-mediated superconductors while
cuprates might be unconventional supercondutors.Comment: 9 pages, 5 figure
Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection
We present graphene oxide (GO) nanosheets functionalized long period grating (LPG) for ultrasensitive hemoglobin sensing. The sensing mechanism relies on the measurement of LPG resonant intensity change induced by the adsorption of hemoglobin molecules onto GO, where GO as a bio-interface linkage provides the significant light-matter interaction between evanescent field and target molecules. The deposition technique based on chemical-bonding associated with physical-adsorption was developed to immobilize GO nanosheets on cylindrical fiber device. The surface morphology was characterized by scanning electron microscope, atomic force microscopy, and Raman spectroscopy. With relatively thicker GO coating, the refractive index (RI) sensitivity of GO-LPG was extremely enhanced and achieved −76.5 dB/RIU, −234.2 dB/RIU and +1580.5 dB/RIU for RI region of 1.33-1.38, 1.40-1.44 and 1.45-1.46, respectively. The GO-LPG was subsequently implemented as an optical biosensor to detect human hemoglobin giving a sensitivity of 1.9 dB/(mg/mL) and a detectable concentration of 0.05 mg/mL, which was far below the hemoglobin threshold value for anemia defined by World Health Organization. The proposed GO-LPG architecture can be further developed as an optical biosensing platform for anemia diagnostics and biomedical applications
The Case for Quantum Key Distribution
Quantum key distribution (QKD) promises secure key agreement by using quantum
mechanical systems. We argue that QKD will be an important part of future
cryptographic infrastructures. It can provide long-term confidentiality for
encrypted information without reliance on computational assumptions. Although
QKD still requires authentication to prevent man-in-the-middle attacks, it can
make use of either information-theoretically secure symmetric key
authentication or computationally secure public key authentication: even when
using public key authentication, we argue that QKD still offers stronger
security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009
Workshop on Quantum and Classical Information Security; version 2 minor
content revision
Mechanical Properties and Machinability of Glass Fiber-Reinforced Polyetheretherketone
Polyetheretherketone (PEEK) is a new type of special engineering plastic that has broad market potentials due to its particular microstructure and mechanical properties. However, few data can be found in the literatures devoted to the mechanical properties and machinability of PEEK, especially in the superprecision field. For the first time, the microscopic mechanical properties and machinability of glassfiber-reinforced PEEK (GF/PEEK), which is one typical derivative of pure PEEK, are studied. The nanoindentation experiment was performed to analyze the microscopic mechanical properties of GF/PEEK. The machinability was studied by single-point diamond turning (SPDT) on the GF/PEEK surface, the roughness and form accuracy of the machined surface were obtained in the following test. Experimental results indicate that GF/PEEK has good microscopic mechanical properties and machinability.Полиэфирэфиркетон новый вид специального конструкционного пластика, который благодаря особой микроструктуре и механическим свойствам имеет большие возможности выхода на рынок. Однако в литературе можно найти не так много данных, относящихся к механическим свойствам и обрабатываемости полиэфирэфиркетона, особенно в сверхточной области. Впервые проведено исследование обрабатываемости и механических свойств на микроскопическом уровне полиэфирэфиркетона, упрочненного стекловолокном, который является типичным производным чистого полиэфирэфиркетона. Выполнено наноиндентирование с целью анализа механических свойств материала на микроскопическом уровне. Обрабатываемость материала изучали с помощью одноточечной алмазной обточки по его поверхности, при испытании были получены значения шероховатости и точности формы обработанной поверхности. Экспериментальные результаты свидетельствуют о хороших механических свойствах и обрабатываемости полиэфирэфиркетона, упрочненного стекловолокном
Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain
Hygroscopic growth of aerosol particles is of significant importance in quantifying the aerosol radiative effect in the atmosphere. In this study, hygroscopic properties of ambient particles are investigated based on particle chemical composition at a suburban site in the North China Plain during the HaChi campaign (Haze in China) in summer 2009. The size-segregated aerosol particulate mass concentration as well as the particle components such as inorganic ions, organic carbon and water-soluble organic carbon (WSOC) are identified from aerosol particle samples collected with a ten-stage impactor. An iterative algorithm is developed to evaluate the hygroscopicity parameter κ from the measured chemical composition of particles. During the HaChi summer campaign, almost half of the mass concentration of particles between 150 nm and 1 μm is contributed by inorganic species. Organic matter (OM) is abundant in ultrafine particles, and 77% of the particulate mass with diameter (Dp) of around 30 nm is composed of OM. A large fraction of coarse particle mass is undetermined and is assumed to be insoluble mineral dust and liquid water. The campaign's average size distribution of κ values shows three distinct modes: a less hygroscopic mode (Dp 1 μm) with κ of about 0.1. The peak of the κ curve appears around 450 nm with a maximum value of 0.35. The derived κ values are consistent with results measured with a high humidity tandem differential mobility analyzer within the size range of 50–250 nm. Inorganics are the predominant species contributing to particle hygroscopicity, especially for particles between 150 nm and 1 μm. For example, NH4NO3, H2SO4, NH4HSO4 and (NH4)2SO4 account for nearly 90% of κ for particles of around 900 nm. For ultrafine particles, WSOC plays a critical role in particle hygroscopicity due to the predominant mass fraction of OM in ultrafine particles. WSOC for particles of around 30 nm contribute 52% of κ. Aerosol hygroscopicity is related to synoptic transport patterns. When southerly wind dominates, particles are more hygroscopic; when northerly wind dominates, particles are less hygroscopic. Aerosol hygroscopicity also has a diurnal variation, which can be explained by the diurnal evolution of planetary boundary layer, photochemical aging processes during daytime and enhanced black carbon emission at night. κ is highly correlated with mass fractions of SO42−, NO3− and NH4+ for all sampled particles as well as with the mass fraction of WSOC for particles of less than 100 nm. A parameterization scheme for κ is developed using mass fractions of SO42−, NO3−, NH4+ and WSOC due to their high correlations with κ, and κ calculated from the parameterization agrees well with κ derived from the particle's chemical composition. Further analysis shows that the parameterization scheme is applicable to other aerosol studies in China
Structural and dielectric properties of SrTiO from first principles
We have investigated the structural and dielectric properties of
SrTiO,the first member of the SrTiO
Ruddlesden-Popper series, within density functional theory. Motivated by recent
work in which thin films of SrTiO were grown by molecular beam
epitaxy (MBE) on SrTiO substrates, the in-plane lattice parameter was
fixed to the theoretically optimized lattice constant of cubic SrTiO
(n=), while the out-of-plane lattice parameter and the internal
structural parameters were relaxed. The fully relaxed structure was also
investigated. Density functional perturbation theory was used to calculate the
zone-center phonon frequencies, Born effective charges, and the electronic
dielectric permittivity tensor. A detailed study of the contribution of
individual infrared-active modes to the static dielectric permittivity tensor
was performed. The calculated Raman and infrared phonon frequencies were found
to be in agreement with experiment where available. Comparisons of the
calculated static dielectric permittivity with experiments on both ceramic
powders and epitaxial thin films are discussed.Comment: 11 pages, 1 figure, 8 tables, submitted to Phys. Rev.
- …