701 research outputs found

    Civil Disobedience: A Constitutional Alternative to Injustice

    Get PDF

    Mean field approach to antiferromagnetic domains in the doped Hubbard model

    Full text link
    We present a restricted path integral approach to the 2D and 3D repulsive Hubbard model. In this approach the partition function is approximated by restricting the summation over all states to a (small) subclass which is chosen such as to well represent the important states. This procedure generalizes mean field theory and can be systematically improved by including more states or fluctuations. We analyze in detail the simplest of these approximations which corresponds to summing over states with local antiferromagnetic (AF) order. If in the states considered the AF order changes sufficiently little in space and time, the path integral becomes a finite dimensional integral for which the saddle point evaluation is exact. This leads to generalized mean field equations allowing for the possibility of more than one relevant saddle points. In a big parameter regime (both in temperature and filling), we find that this integral has {\em two} relevant saddle points, one corresponding to finite AF order and the other without. These degenerate saddle points describe a phase of AF ordered fermions coexisting with free, metallic fermions. We argue that this mixed phase is a simple mean field description of a variety of possible inhomogeneous states, appropriate on length scales where these states appear homogeneous. We sketch systematic refinements of this approximation which can give more detailed descriptions of the system.Comment: 14 pages RevTex, 6 postscript figures included using eps

    Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet

    Full text link
    We present the results of an exact diagonalization study of the spin-1/2 Heisenberg antiferromagnet on a two-dimensional version of the pyrochlore lattice, also known as the square lattice with crossings or the checkerboard lattice. Examining the low energy spectra for systems of up to 24 spins, we find that all clusters studied have non-degenerate ground states with total spin zero, and big energy gaps to states with higher total spin. We also find a large number of non-magnetic excitations at energies within this spin gap. Spin-spin and spin-Peierls correlation functions appear to be short-ranged, and we suggest that the ground state is a spin liquid.Comment: 7 pages, 11 figures, RevTeX minor changes made, Figure 6 correcte

    Vortex pinning in high-Tc materials via randomly oriented columnar defects, created by GeV proton-induced fission fragments

    Full text link
    Extensive work has shown that irradiation with 0.8 GeV protons can produce randomly oriented columnar defects (CD's) in a large number of HTS materials, specifically those cuprates containing Hg, Tl, Pb, Bi, and similar heavy elements. Absorbing the incident proton causes the nucleus of these species to fission, and the recoiling fission fragments create amorphous tracks, i.e., CD's. The superconductive transition temperature Tc decreases linearly with proton fluence and we analyze how the rate depends on the family of superconductors. In a study of Tl-2212 materials, adding defects decreases the equilibrium magnetization Meq(H) significantly in magnitude and changes its field dependence; this result is modeled in terms of vortex pinning. Analysis of the irreversible magnetization and its time dependence shows marked increases in the persistent current density and effective pinning energy, and leads to an estimate for the elementary attempt time for vortex hopping, tau ~ 4x10^(-9) s.Comment: Submitted to Physica C; presentation at ISS-2001. PDF file only, 13 pp. tota

    An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model

    Full text link
    We have calculated S(q) and the single particle distribution function for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site lattice with periodic boundary conditions; we justify the use of this lattice in compariosn to those of having the full square symmetry of the bulk. This new cluster has a high density of vec k points along the diagonal of reciprocal space, viz. along k = (k,k). The results clearly demonstrate that when the single hole problem has a ground state with a system momentum of vec k = (pi/2,pi/2), the resulting ground state for N holes involves a shift of the peak of the system's structure factor away from the antiferromagnetic state. This shift effectively increases continuously with N. When the single hole problem has a ground state with a momentum that is not equal to k = (pi/2,pi/2), then the above--mentioned incommensurability for N holes is not found. The results for the incommensurate ground states can be understood in terms of rigid--band filling: the effective occupation of the single hole k = (pi/2,pi/2) states is demonstrated by the evaluation of the single particle momentum distribution function . Unlike many previous studies, we show that for the many hole ground state the occupied momentum states are indeed k = (+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include

    Influence of thermal fluctuations on quantum phase transitions in one-dimensional disordered systems: Charge density waves and Luttinger liquids

    Full text link
    The low temperature phase diagram of 1D weakly disordered quantum systems like charge or spin density waves and Luttinger liquids is studied by a \emph{full finite temperature} renormalization group (RG) calculation. For vanishing quantum fluctuations this approach is amended by an \emph{exact} solution in the case of strong disorder and by a mapping onto the \emph{Burgers equation with noise} in the case of weak disorder, respectively. At \emph{zero} temperature we reproduce the quantum phase transition between a pinned (localized) and an unpinned (delocalized) phase for weak and strong quantum fluctuations, respectively, as found previously by Fukuyama or Giamarchi and Schulz. At \emph{finite} temperatures the localization transition is suppressed: the random potential is wiped out by thermal fluctuations on length scales larger than the thermal de Broglie wave length of the phason excitations. The existence of a zero temperature transition is reflected in a rich cross-over phase diagram of the correlation functions. In particular we find four different scaling regions: a \emph{classical disordered}, a \emph{quantum disordered}, a \emph{quantum critical} and a \emph{thermal} region. The results can be transferred directly to the discussion of the influence of disorder in superfluids. Finally we extend the RG calculation to the treatment of a commensurate lattice potential. Applications to related systems are discussed as well.Comment: 19 pages, 7 figure

    Thermal Conductivity of Spin-1/2 Chains

    Full text link
    We study the low-temperature transport properties of clean one-dimensional spin-1/2 chains coupled to phonons. Due to the presence of approximate conservation laws, the heat current decays very slowly giving rise to an exponentially large heat conductivity, κ eT/T\kappa ~ e^{T^*/T}. As a result of an interplay of Umklapp scattering and spinon-phonon coupling, the characteristic energy scale TT^* turns out to be of order ΘD/2\Theta_D/2, where ΘD\Theta_D is the Debye energy, rather than the magnetic exchange interaction JJ -- in agreement with recent measurements in SrCuO compounds. A large magnetic field strongly affects the heat transport by two distinct mechanisms. First, it induces a LINEAR spinon--phonon coupling, which alters the nature of the T>0T -> 0 fixed point: the elementary excitations of the system are COMPOSITE SPINON-PHONON objects. Second, the change of the magnetization and the corresponding change of the wave vector of the spinons strongly affects the way in which various Umklapp processes can relax the heat current, leading to a characteristic fractal--like spiky behavior of κ\kappa when plotted as a function of magnetization at fixed T.Comment: 16 pages, RevTex4, 2 figures included; revised refs. and some useful comments on experimental relevance. On July 12 2005, added an appendix correcting an error in the form of the phonon propagator. The main result is unchange

    A microscopic model for d-wave charge carrier pairing and non-Fermi-liquid behavior in a purely repulsive 2D electron system

    Full text link
    We investigate a microscopic model for strongly correlated electrons with both on-site and nearest neighbor Coulomb repulsion on a 2D square lattice. This exhibits a state in which electrons undergo a ``somersault'' in their internal spin-space (spin-flux) as they traverse a closed loop in external coordinate space. When this spin-1/2 antiferromagnetic (AFM) insulator is doped, the ground state is a liquid of charged, bosonic meron-vortices, which for topological reasons are created in vortex-antivortex pairs. The magnetic exchange energy of the distorted AFM background leads to a logarithmic vortex-antivortex attraction which overcomes the direct Coulomb repulsion between holes localized on the vortex cores. This leads to the appearance of pre-formed charged pairs. We use the Configuration Interaction (CI) Method to study the quantum translational and rotational motion of various charged magnetic solitons and soliton pairs. The CI method systematically describes fluctuation and quantum tunneling corrections to the Hartree-Fock Approximation (HFA). We find that the lowest energy charged meron-antimeron pairs exhibit d-wave rotational symmetry, consistent with the symmetry of the cuprate superconducting order parameter. For a single hole in the 2D AFM plane, we find a precursor to spin-charge separation in which a conventional charged spin-polaron dissociates into a singly charged meron-antimeron pair. This model provides a unified microscopic basis for (i) non-Fermi-liquid transport properties, (ii) d-wave preformed charged carrier pairs, (iii) mid-infrared optical absorption, (iv) destruction of AFM long range order with doping and other magnetic properties, and (v) certain aspects of angled resolved photo-emission spectroscopy (ARPES).Comment: 14 pages, 17 figure

    The dopamine D1 receptor agonist SKF81297 has dose-related effects on locomotor activity but is without effect in a CER trace conditioning procedure conducted with two versus four trials

    Get PDF
    In an appetitively motivated procedure, we have previously reported that systemic treatment with the dopamine (DA) D1 receptor agonist SKF81297 (0.4 and 0.8 mg/kg) depressed acquisition at a 2s inter-stimulus-interval (ISI), suitable to detect trace conditioning impairment. However since DA is involved in reinforcement processes, the generality of effects across appetitively- and aversively-motivated trace conditioning procedures cannot be assumed. The present study tested the effects of SKF81297 (0.4 and 0.8 mg/kg) in an established conditioned emotional response (CER) procedure. Trace-dependent conditioning was clearly shown in two experiments: while conditioning was relatively strong at a 3-s ISI, it was attenuated at a 30-s ISI. This was shown after two (Experiment 1) or four (Experiment 2) conditioning trials conducted in - as far as possible - the same CER procedure. Contrary to prediction, in neither experiment was there any indication that trace conditioning was attenuated by treatment with 0.4 or 0.8 mg/kg SKF81297. In the same rats, locomotor activity was significantly enhanced at the 0.8 mg/kg dose of SKF81297. These results suggest that procedural details of the trace conditioning variant in use are an important determinant of the profile of dopaminergic modulation
    corecore