6 research outputs found

    Low-energy p-d Scattering: High Precision Data, Comparisons with Theory, and Phase-Shift Analyses

    Get PDF
    Angular distributions of sigma(theta), A_y, iT_11, T_20, T_21, and T_22 have been measured for d-p scattering at E_c.m.=667 keV. This set of high-precision data is compared to variational calculations with the nucleon-nucleon potential alone and also to calculations including a three-nucleon (3N) potential. Agreement with cross-section and tensor analyzing power data is excellent when a 3N potential is used. However, a comparison between the vector analyzing powers reveals differences of approximately 40% in the maxima of the angular distributions which is larger than reported at higher energies for both p-d and n-d scattering. Single-energy phase-shift analyses were performed on this data set and a similar data set at E_c.m.=431.3 keV. The role of the different phase-shift parameters in fitting these data is discussed.Comment: 18 pages, 6 figure

    Four-nucleon scattering with a correlated Gaussian basis method

    Full text link
    Elastic-scattering phase shifts for four-nucleon systems are studied in an abab-initioinitio type cluster model in order to clarify the role of the tensor force and to investigate cluster distortions in low energy d+dd+d and t+pt+p scattering. In the present method, the description of the cluster wave function is extended from a simple (0ss) harmonic-oscillator shell model to a few-body model with a realistic interaction, in which the wave function of the subsystems are determined with the Stochastic Variational Method. In order to calculate the matrix elements of the four-body system, we have developed a Triple Global Vector Representation method for the correlated Gaussian basis functions. To compare effects of the cluster distortion with realistic and effective interactions, we employ the AV8^{\prime} potential as a realistic interaction and the Minnesota potential as an effective interaction. Especially for 1S0^1S_0, the calculated phase shifts show that the t+pt+p and h+nh+n channels are strongly coupled to the d+dd+d channel for the case of the realistic interaction. On the contrary, the coupling of these channels plays a relatively minor role for the case of the effective interaction. This difference between both potentials originates from the tensor term in the realistic interaction. Furthermore, the tensor interaction makes the energy splitting of the negative parity states of 4^4He consistent with experiments. No such splitting is however reproduced with the effective interaction
    corecore