481 research outputs found
Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge
It is shown that the fluctuation in the temperature of the cosmic microwave
background in any direction may be evaluated as an integral involving scalar
and dipole form factors, which incorporate all relevant information about
acoustic oscillations before the time of last scattering. A companion paper
gives asymptotic expressions for the multipole coefficient in terms of
these form factors. Explicit expressions are given here for the form factors in
a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both
Landau and Silk damping; inclusion of late-time effects; several references
added; minor changes and corrections made. Accepted for publication in Phys.
Rev. D1
Correlation Entropy of an Interacting Quantum Field and H-theorem for the O(N) Model
Following the paradigm of Boltzmann-BBGKY we propose a correlation entropy
(of the nth order) for an interacting quantum field, obtained by `slaving'
(truncation with causal factorization) of the higher (n+1 th) order correlation
functions in the Schwinger-Dyson system of equations. This renders an otherwise
closed system effectively open where dissipation arises. The concept of
correlation entropy is useful for addressing issues related to thermalization.
As a small yet important step in that direction we prove an H-theorem for the
correlation entropy of a quantum mechanical O(N) model with a Closed Time Path
Two Particle Irreducible Effective Action at the level of Next-to-Leading-Order
large N approximation. This model may be regarded as a field theory in
space dimensions.Comment: 22 page
Scaling detection in time series: diffusion entropy analysis
The methods currently used to determine the scaling exponent of a complex
dynamic process described by a time series are based on the numerical
evaluation of variance. This means that all of them can be safely applied only
to the case where ordinary statistical properties hold true even if strange
kinetics are involved. We illustrate a method of statistical analysis based on
the Shannon entropy of the diffusion process generated by the time series,
called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy
time series, as prototypes of ordinary and anomalus statistics, respectively,
and we analyse them with the DEA and four ordinary methods of analysis, some of
which are very popular. We show that the DEA determines the correct scaling
exponent even when the statistical properties, as well as the dynamic
properties, are anomalous. The other four methods produce correct results in
the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy
statistics.Comment: 21 pages,10 figures, 1 tabl
Unzipping of DNA with correlated base-sequence
We consider force-induced unzipping transition for a heterogeneous DNA model
with a correlated base-sequence. Both finite-range and long-range correlated
situations are considered. It is shown that finite-range correlations increase
stability of DNA with respect to the external unzipping force. Due to
long-range correlations the number of unzipped base-pairs displays two widely
different scenarios depending on the details of the base-sequence: either there
is no unzipping phase-transition at all, or the transition is realized via a
sequence of jumps with magnitude comparable to the size of the system. Both
scenarios are different from the behavior of the average number of unzipped
base-pairs (non-self-averaging). The results can be relevant for explaining the
biological purpose of correlated structures in DNA.Comment: 22 pages, revtex4, 14 eps figures; reprinted in the June 15, 2004
issue of Virtual Journal of Biological Physics Researc
Reionization by active sources and its effects on the cosmic microwave background
We investigate the possible effects of reionization by active sources on the
cosmic microwave background. We concentrate on the sources themselves as the
origin of reionization, rather than early object formation, introducing an
extra period of heating motivated by the active character of the perturbations.
Using reasonable parameters, this leads to four possibilities depending on the
time and duration of the energy input: delayed last scattering, double last
scattering, shifted last scattering and total reionization. We show that these
possibilities are only very weakly constrained by the limits on spectral
distortions from the COBE FIRAS measurements. We illustrate the effects of
these reionization possibilities on the angular power spectrum of temperature
anisotropies and polarization for simple passive isocurvature models and simple
coherent sources, observing the difference between passive and active models.
Finally, we comment on the implications of this work for more realistic active
sources, such as causal white noise and topological defect models. We show for
these models that non-standard ionization histories can shift the peak in the
CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version
accepted for publication in Phys. Rev.
Finite Number and Finite Size Effects in Relativistic Bose-Einstein Condensation
Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular
cavity is studied. Finite size corrections to the critical temperature are
obtained by the heat kernel method. Using zeta-function regularization of
one-loop effective potential, lower dimensional critical temperatures are
calculated. In the presence of strong anisotropy, the condensation is shown to
occur in multisteps. The criteria of this behavior is that critical
temperatures corresponding to lower dimensional systems are smaller than the
three dimensional critical temperature.Comment: 18 pages, 9 figures, Fig.3 replaced, to appear in Physical Review
Correlation studies of open and closed states fluctuations in an ion channel: Analysis of ion current through a large conductance locust potassium channel
Ion current fluctuations occurring within open and closed states of large
conductance locust potassium channel (BK channel) were investigated for the
existence of correlation. Both time series, extracted from the ion current
signal, were studied by the autocorrelation function (AFA) and the detrended
fluctuation analysis (DFA) methods. The persistent character of the short- and
middle-range correlations of time series is shown by the slow decay of the
autocorrelation function. The DFA exponent is significantly larger
than 0.5. The existence of strongly-persistent long-range correlations was
detected only for closed-states fluctuations, with . The
long-range correlation of the BK channel action is therefore determined by the
character of closed states. The main outcome of this study is that the memory
effect is present not only between successive conducting states of the channel
but also independently within the open and closed states themselves. As the ion
current fluctuations give information about the dynamics of the channel
protein, our results point to the correlated character of the protein movement
regardless whether the channel is in its open or closed state.Comment: 12 pages, 5 figures; to be published in Phys. Rev.
Localization properties of the anomalous diffusion phase in the directed trap model and in the Sinai diffusion with bias
We study the anomalous diffusion phase with which
exists both in the Sinai diffusion at small bias, and in the related directed
trap model presenting a large distribution of trapping time . Our starting point is the Real Space Renormalization method in
which the whole thermal packet is considered to be in the same renormalized
valley at large time : this assumption is exact only in the limit
and corresponds to the Golosov localization. For finite , we thus
generalize the usual RSRG method to allow for the spreading of the thermal
packet over many renormalized valleys. Our construction allows to compute exact
series expansions in of all observables : at order , it is
sufficient to consider a spreading of the thermal packet onto at most
traps in each sample, and to average with the appropriate measure over the
samples. For the directed trap model, we show explicitly up to order
how to recover the diffusion front, the thermal width, and the localization
parameter . We moreover compute the localization parameters for
arbitrary
, the correlation function of two particles, and the generating function
of thermal cumulants. We then explain how these results apply to the Sinai
diffusion with bias, by deriving the quantitative mapping between the
large-scale renormalized descriptions of the two models.Comment: 33 pages, 3 eps figure
Fragmentation Function and Hadronic Production of the Heavy Supersymmetric Hadrons
The light top-squark \sto may be the lightest squark and its lifetime may
be `long enough' in a kind of SUSY models which have not been ruled out yet
experimentally, so colorless `supersymmetric hadrons (superhadrons)' (\sto
\bar{q}) ( is a quark except -quark) may be formed as long as the light
top-squark \sto can be produced. Fragmentation function of \sto to heavy
`supersymmetric hadrons (superhadrons)' (\sto \bar{Q}) ( or
) and the hadronic production of the superhadrons are investigated
quantitatively. The fragmentation function is calculated precisely. Due to the
difference in spin of the SUSY component, the asymptotic behavior of the
fragmentation function is different from those of the existent ones. The
fragmentation function is also applied to compute the production of heavy
superhadrons at hadronic colliders Tevatron and LHC under the so-called
fragmentation approach. The resultant cross-section for the heavy superhadrons
is too small to observe at Tevatron, but great enough at LHC, even when all the
relevant parameters in the SUSY models are taken within the favored region for
the heavy superhadrons. The production of `light superhadrons' (\sto \bar{q})
() is also roughly estimated. It is pointed out that the production
cross-sections of the light superhadrons (\sto \bar{q}) may be much greater
than those of the heavy superhadrons, so that even at Tevatron the light
superhadrons may be produced in great quantities.Comment: 20 pages, 9 figure
Markov Properties of Electrical Discharge Current Fluctuations in Plasma
Using the Markovian method, we study the stochastic nature of electrical
discharge current fluctuations in the Helium plasma. Sinusoidal trends are
extracted from the data set by the Fourier-Detrended Fluctuation analysis and
consequently cleaned data is retrieved. We determine the Markov time scale of
the detrended data set by using likelihood analysis. We also estimate the
Kramers-Moyal's coefficients of the discharge current fluctuations and derive
the corresponding Fokker-Planck equation. In addition, the obtained Langevin
equation enables us to reconstruct discharge time series with similar
statistical properties compared with the observed in the experiment. We also
provide an exact decomposition of temporal correlation function by using
Kramers-Moyal's coefficients. We show that for the stationary time series, the
two point temporal correlation function has an exponential decaying behavior
with a characteristic correlation time scale. Our results confirm that, there
is no definite relation between correlation and Markov time scales. However
both of them behave as monotonic increasing function of discharge current
intensity. Finally to complete our analysis, the multifractal behavior of
reconstructed time series using its Keramers-Moyal's coefficients and original
data set are investigated. Extended self similarity analysis demonstrates that
fluctuations in our experimental setup deviates from Kolmogorov (K41) theory
for fully developed turbulence regime.Comment: 25 pages, 9 figures and 4 tables. V3: Added comments, references,
figures and major correction
- âŠ