7 research outputs found

    EpIG‐DB: A database of vascular epiphyte assemblages in the Neotropics

    Get PDF
    Vascular epiphytes are a diverse and conspicuous component of biodiversity in tropical and subtropical forests. Yet, the patterns and drivers of epiphyte assemblages are poorly studied in comparison with soil‐rooted plants. Current knowledge about diversity patterns of epiphytes mainly stems from local studies or floristic inventories, but this information has not yet been integrated to allow a better understanding of large‐scale distribution patterns. EpIG‐DB, the first database on epiphyte assemblages at the continental scale, resulted from an exhaustive compilation of published and unpublished inventory data from the Neotropics. The current version of EpIG‐DB consists of 463,196 individual epiphytes from 3,005 species, which were collected from a total of 18,148 relevĂ©s (host trees and ‘understory’ plots). EpIG‐DB reports the occurrence of ‘true’ epiphytes, hemiepiphytes and nomadic vines, including information on their cover, abundance, frequency and biomass. Most records (97%) correspond to sampled host trees, 76% of them aggregated in forest plots. The data is stored in a TURBOVEG database using the most up‐to‐date checklist of vascular epiphytes. A total of 18 additional fields were created for the standardization of associated data commonly used in epiphyte ecology (e.g. by considering different sampling methods). EpIG‐DB currently covers six major biomes across the whole latitudinal range of epiphytes in the Neotropics but welcomes data globally. This novel database provides, for the first time, unique biodiversity data on epiphytes for the Neotropics and unified guidelines for future collection of epiphyte data. EpIG‐DB will allow exploration of new ways to study the community ecology and biogeography of vascular epiphytes

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations

    Tracheal intubation in traumatic brain injury

    Get PDF
    Background: We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods: Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results: In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion: The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration: NCT02210221

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore