725 research outputs found

    Black hole thermodynamics with generalized uncertainty principle

    Full text link
    In the standard viewpoint, the temperature of a stationary black hole is proportional to its surface gravity, TH=κ/2πT_H=\hbar\kappa/2\pi. This is a semiclassical result and the quantum gravity effects are not taken into consideration. This Letter explores a unified expression for the black hole temperature in the sense of a generalized uncertainty principle(GUP). Our discussion involves a heuristic analysis of a particle which is absorbed by the black hole. Besides a class of static and spherically symmetric black holes, an axially symmetric Kerr-Newman black hole is considered. Different from the existing literature, we suggest that the black hole's irreducible mass represent the characteristic size in the absorption process. The information capacity of a remnant is also discussed by Bousso's D-bound in de Sitter spacetime.Comment: 18 pages, great improvement on the first version; a Kerr-Newman black hole is considere

    Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip

    Get PDF
    Using the recursive Green's function technique, we study the coherent electron conductance of a quantum point contact in the presence of a scanning probe microscope tip. Images of the coherent fringe inside a quantum point contact for different widths are obtained. It is found that the conductance of a specific channel is reduced while other channels are not affected as long as the tip is located at the positions correspending to that channel. Moreover, the coherent fringe is smoothed out by increasing the temperature or the voltage across the device. Our results are consistent with the experiments reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page

    Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field

    Full text link
    We investigate dynamics of exact N-soliton trains in spin chain driven by a time-dependent magnetic field by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin precession around the magnetic field and periodic shape-variation induced by the time varying field as well. In terms of the general soliton solutions N-soliton interaction and particularly various two-soliton collisions are analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears generally due to the time varying field. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and field parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure

    Effects of C-Terminal Truncation on Autocatalytic Processing of Bacillus licheniformis gamma-Glutamyl Transpeptidase

    Get PDF
    The role of the C-terminal region of Bacillus licheniformis gamma-glutamyl transpeptidase (BlGGT) was investigated by deletion analysis. Seven C-terminally truncated BlGGTs lacking 581-585, 577-585, 576-585, 566-585, 558-585, 523-585, and 479-585 amino acids, respectively, were generated by site-directed mutagenesis. Deletion of the last nine amino acids had no appreciable effect on the autocatalytic processing of the enzyme, and the engineered protein was active towards the synthetic substrate L-gamma-glutamyl-p-nitroanilide. However, a further deletion to Val576 impaired the autocatalytic processing. In vitro maturation experiments showed that the truncated BlGGT precursors, pro-Delta (576-585), pro-Delta (566-585), and pro-Delta(558-585), could partially precede a time-dependent autocatalytic process to generate the L- and S-subunits, and these proteins showed a dramatic decrease in catalytic activity with respect to the wild-type enzyme. The parental enzyme (BlGGT-4aa) and BlGGT were unfolded biphasically by guanidine hydrochloride (GdnCl), but Delta(577-585), Delta(576-585), Delta(566-585), Delta(558-585), Delta(523-585), and Delta(479-585) followed a monophasic unfolding process and showed a sequential reduction in the GdnCl concentration corresponding to half effect and. Delta G(0) for the unfolding. BlGGT-4aa and BlGGT sedimented at similar to 4.85 S and had a heterodimeric structure of approximately 65.23 kDa in solution, and this structure was conserved in all of the truncated proteins. The frictional ratio (f/f(o)) of BlGGT-4aa, BlGGT, Delta(581-585), and Delta(577-585) was 1.58, 1.57, 1.46, and 1.39, respectively, whereas the remaining enzymes existed exclusively as precursor form with a ratio of less than 1.18. Taken together, these results provide direct evidence for the functional role of the C-terminal region in the autocatalytic processing of BlGGT

    Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study

    Get PDF
    A study of rotational properties of the ground superdeformed bands in \Hg{0}, \Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint IPN-TH 93-6

    Spin polaron damping in the spin-fermion model for cuprate superconductors

    Full text link
    A self-consistent, spin rotational invariant Green's function procedure has been developed to calculate the spectral function of carrier excitations in the spin-fermion model for the CuO2 plane. We start from the mean field description of a spin polaron in the Mori-Zwanzig projection method. In order to determine the spin polaron lifetime in the self-consistent Born approximation, the self-energy is expressed by an irreducible Green's function. Both, spin polaron and bare hole spectral functions are calculated. The numerical results show a well pronounced quasiparticle peak near the bottom of the dispersion at (pi/2,pi/2), the absence of the quasiparticle at the Gamma-point, a rather large damping away from the minimum and an asymmetry of the spectral function with respect to the antiferromagnetic Brillouin zone. These findings are in qualitative agreement with photoemission data for undoped cuprates. The direct oxygen-oxygen hopping is responsible for a more isotropic minimum at (pi/2,pi/2).Comment: 18 pages, 13 figure

    Jet disc coupling in black hole binaries

    Full text link
    In the last decade multi-wavelength observations have demonstrated the importance of jets in the energy output of accreting black hole binaries. The observed correlations between the presence of a jet and the state of the accretion flow provide important information on the coupling between accretion and ejection processes. After a brief review of the properties of black hole binaries, I illustrate the connection between accretion and ejection through two particularly interesting examples. First, an INTEGRAL observation of Cygnus X-1 during a 'mini-' state transition reveals disc jet coupling on time scales of orders of hours. Second, the black hole XTEJ1118+480 shows complex correlations between the X-ray and optical emission. Those correlations are interpreted in terms of coupling between disc and jet on time scales of seconds or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets - from Planets to Quasars. Accepted for publication in Astrophysics & Space Scienc

    Geometric phase in the Kitaev honeycomb model and scaling behavior at critical points

    Full text link
    In this paper a geometric phase of the Kitaev honeycomb model is derived and proposed to characterize the topological quantum phase transition. The simultaneous rotation of two spins is crucial to generate the geometric phase for the multi-spin in a unit-cell unlike the one-spin case. It is found that the ground-state geometric phase, which is non-analytic at the critical points, possesses zigzagging behavior in the gapless BB phase of non-Abelian anyon excitations, but is a smooth function in the gapped AA phase. Furthermore, the finite-size scaling behavior of the non-analytic geometric phase along with its first- and second-order partial derivatives in the vicinity of critical points is shown to exhibit the universality. The divergent second-order derivative of geometric phase in the thermodynamic limit indicates the typical second-order phase transition and thus the topological quantum phase transition can be well described in terms of the geometric-phase.Comment: 7 pages, 8 figure

    Tensor network states and geometry

    Full text link
    Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.Comment: 18 pages, 18 figure

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature TT^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
    corecore