In the standard viewpoint, the temperature of a stationary black hole is
proportional to its surface gravity, TH=ℏκ/2π. This is a
semiclassical result and the quantum gravity effects are not taken into
consideration. This Letter explores a unified expression for the black hole
temperature in the sense of a generalized uncertainty principle(GUP). Our
discussion involves a heuristic analysis of a particle which is absorbed by the
black hole. Besides a class of static and spherically symmetric black holes, an
axially symmetric Kerr-Newman black hole is considered. Different from the
existing literature, we suggest that the black hole's irreducible mass
represent the characteristic size in the absorption process. The information
capacity of a remnant is also discussed by Bousso's D-bound in de Sitter
spacetime.Comment: 18 pages, great improvement on the first version; a Kerr-Newman black
hole is considere