1,734 research outputs found

    Recurrence and higher ergodic properties for quenched random Lorentz tubes in dimension bigger than two

    Full text link
    We consider the billiard dynamics in a non-compact set of R^d that is constructed as a bi-infinite chain of translated copies of the same d-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called `quenched random Lorentz tube'. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.Comment: Final version for J. Stat. Phys., 18 pages, 4 figure

    Mode structure and photon number correlations in squeezed quantum pulses

    Get PDF
    The question of efficient multimode description of optical pulses is studied. We show that a relatively very small number of nonmonochromatic modes can be sufficient for a complete quantum description of pulses with Gaussian quadrature statistics. For example, a three-mode description was enough to reproduce the experimental data of photon number correlations in optical solitons [S. Spalter et al., Phys. Rev. Lett. 81, 786 (1998)]. This approach is very useful for a detailed understanding of squeezing properties of soliton pulses with the main potential for quantum communication with continuous variables. We show how homodyne detection and/or measurements of photon number correlations can be used to determine the quantum state of the multi-mode field. We also discuss a possible way of physical separation of the nonmonochromatic modes.Comment: 14 pages, 4 figures; minor revisions of the text, new references; to appear in the Phys. Rev.

    Geodesic deviation in pp-wave spacetimes of quadratic curvature gravity

    Full text link
    We write the equation of geodesic deviations in the spacetime of pppp-waves in terms of the Newman-Penrose scalars and apply it to study gravitational waves in quadratic curvature gravity. We show that quadratic curvature gravity pppp-waves can have a transverse helicity-0 polarization mode and two transverse helicity-2 general relativity-like wave polarizations. A concrete example is given in which we analyze the wave polarizations of an exact impulsive gravitational wave solution to quadratic curvature gravity.Comment: 16 pages, no figures, accepted in Physical Review

    The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis.

    Get PDF
    The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases

    Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems

    Full text link
    We analyze the dynamics of a charged particle moving in the presence of spatially-modulated magnetic fields. From Poincare surfaces of section and Liapunov exponents for characteristic trajectories we find that the fraction of pinned and runaway quasiperiodic orbits {\em vs}. chaotic orbits depends strongly on the ratio of cyclotron radius to the structure parameters, as well as on the amplitude of the modulated field. We present a complete characterization of the dynamical behavior of such structures, and investigate the contribution to the magnetoconductivity from all different orbits using a classical Kubo formula. Although the DC conductivity of the system depends strongly on the pinned and runaway trajectories, the frequency response reflects the topology of all different orbits, and even their unusual temporal behavior.Comment: Submitted to PRB - 14 figure files - REVTEX tex

    First and second order clustering transitions for a system with infinite-range attractive interaction

    Full text link
    We consider a Hamiltonian system made of NN classical particles moving in two dimensions, coupled via an {\it infinite-range interaction} gauged by a parameter AA. This system shows a low energy phase with most of the particles trapped in a unique cluster. At higher energy it exhibits a transition towards a homogenous phase. For sufficiently strong coupling AA an intermediate phase characterized by two clusters appears. Depending on the value of AA the observed transitions can be either second or first order in the canonical ensemble. In the latter case microcanonical results differ dramatically from canonical ones. However, a canonical analysis, extended to metastable and unstable states, is able to describe the microcanonical equilibrium phase. In particular, a microcanonical negative specific heat regime is observed in the proximity of the transition whenever it is canonically discontinuous. In this regime, {\it microcanonically stable} states are shown to correspond to {\it saddles} of the Helmholtz free energy, located inside the spinodal region.Comment: 4 pages, Latex - 3 EPS Figs - Submitted to Phys. Rev.

    Dynamics of viscoelastic membranes

    Get PDF
    We determine both the in-plane and out-of-plane dynamics of viscoelastic membranes separating two viscous fluids in order to understand microrheological studies of such membranes. We demonstrate the general viscoelastic signatures in the dynamics of shear, bending, and compression modes. We also find a screening of the otherwise two-dimensional character of the response to point forces due to the presence of solvent. Finally, we show that there is a linear, hydrodynamic coupling between the in-plane compression modes of the membrane and the out-of-plane bending modes in the case where the membrane separates two different fluids or environments

    Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism

    Full text link
    The main goal of this paper is to get in a straightforward form the field equations in metric f(R) gravity, using elementary variational principles and adding a boundary term in the action, instead of the usual treatment in an equivalent scalar-tensor approach. We start with a brief review of the Einstein-Hilbert action, together with the Gibbons-York-Hawking boundary term, which is mentioned in some literature, but is generally missing. Next we present in detail the field equations in metric f(R) gravity, including the discussion about boundaries, and we compare with the Gibbons-York-Hawking term in General Relativity. We notice that this boundary term is necessary in order to have a well defined extremal action principle under metric variation.Comment: 12 pages, title changes by referee recommendation. Accepted for publication in General Relativity and Gravitation. Matches with the accepted versio
    corecore