6 research outputs found

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    No full text
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Zâ€Č and Wâ€Č resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1fb

    Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the <math display="inline"><mi>τ</mi><mi>τ</mi></math> final state

    No full text
    International audienceA study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138  fb-1. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions

    Measurement of the Bs0→Ό+Ό− decay properties and search for the B0â€Żâ†’â€ŻÎŒ+Ό− decay in proton-proton collisions at s=13TeV

    No full text
    Measurements are presented of the Bs0→Ό+Ό− branching fraction and effective lifetime, as well as results of a search for the B0→Ό+Ό− decay in proton-proton collisions at s=13TeV at the LHC. The analysis is based on data collected with the CMS detector in 2016–2018 corresponding to an integrated luminosity of 140fb−1. The branching fraction of the Bs0→Ό+Ό− decay and the effective Bs0 meson lifetime are the most precise single measurements to date. No evidence for the B0→Ό+Ό− decay has been found. All results are found to be consistent with the standard model predictions and previous measurements

    Measurement of the ttÂŻ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at s=13 TeV

    No full text
    The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at s=13TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb−1. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a tt¯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42−0.69+0.64)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750–900 and >900GeV

    Evidence for four-top quark production in proton-proton collisions at s=13TeV

    No full text
    The production of four top quarks (ttÂŻttÂŻ) is studied with LHC proton-proton collision data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, and corresponding to integrated luminosities of up to 138fb−1. Events that have no leptons (all-hadronic), one lepton, or two opposite-sign leptons (where lepton refers only to prompt electrons or prompt muons) are considered. This is the first ttÂŻttÂŻ measurement that includes the all-hadronic final state. The observed significance of the ttÂŻttÂŻ signal in these final states of 3.9 standard deviations (1.5 expected) provides evidence for ttÂŻttÂŻ production, with a measured cross section of 36−11+12fb. Combined with earlier CMS results in other final states, the signal significance is 4.0 standard deviations (3.2 expected). The combination returns an observed cross section of 17±4(stat)±3(syst)fb, which is consistent with the standard model prediction

    Measurement of the top quark mass using a profile likelihood approach with the lepton + jets final states in proton–proton collisions at s=13 TeV\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}

    No full text
    International audienceThe mass of the top quark is measured in 36.3 fb−1\,\text {fb}^{-1} of LHC proton–proton collision data collected with the CMS detector at s=13 TeV\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} . The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be 171.77±0.37 GeV171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} . This approach significantly improves the precision over previous measurements
    corecore