1,614 research outputs found
Quantum simulation of artificial Abelian gauge field using nitrogen-vacancy center ensembles coupled to superconducting resonators
We propose a potentially practical scheme to simulate artificial Abelian
gauge field for polaritons using a hybrid quantum system consisting of
nitrogen-vacancy center ensembles (NVEs) and superconducting transmission line
resonators (TLR). In our case, the collective excitations of NVEs play the role
of bosonic particles, and our multiport device tends to circulate polaritons in
a behavior like a charged particle in an external magnetic field. We discuss
the possibility of identifying signatures of the Hofstadter "butterfly" in the
optical spectra of the resonators, and analyze the ground state crossover for
different gauge fields. Our work opens new perspectives in quantum simulation
of condensed matter and many-body physics using hybrid spin-ensemble circuit
quantum electrodynamics system. The experimental feasibility and challenge are
justified using currently available technology.Comment: 6 papes+supplementary materia
Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors
In view of the recent experimental facts in the iron-pnictides, we make a
proposal that the itinerant electrons and local moments are simultaneously
present in such multiband materials. We study a minimal model composed of
coupled itinerant electrons and local moments to illustrate how a consistent
explanation of the experimental measurements can be obtained in the leading
order approximation. In this mean-field approach, the spin-density-wave (SDW)
order and superconducting pairing of the itinerant electrons are not directly
driven by the Fermi surface nesting, but are mainly induced by their coupling
to the local moments. The presence of the local moments as independent degrees
of freedom naturally provides strong pairing strength for superconductivity and
also explains the normal-state linear-temperature magnetic susceptibility above
the SDW transition temperature. We show that this simple model is supported by
various anomalous magnetic properties and isotope effect which are in
quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
This study presents a simulation framework for cloud and
precipitation measurements via spaceborne millimeter-wave radar composed of
eight submodules. To demonstrate the influence of the assumed physical
parameters and to improve the microphysical modeling of the hydrometeors, we
first conducted a sensitivity analysis. The results indicated that the radar reflectivity was highly sensitive to the particle size distribution (PSD) parameter of the median volume diameter and particle density parameter, which can cause reflectivity variations of several to more than 10 dB. The variation in the prefactor of the mass–power relations that related to the riming degree may result in an uncertainty of approximately 30 %–45 %. The
particle shape and orientation also had a significant impact on the radar
reflectivity. The spherical assumption may result in an average
overestimation of the reflectivity by approximately 4 %–14 %, dependent on
the particle type, shape, and orientation. Typical weather cases were
simulated using improved physical modeling, accounting for the particle
shapes, typical PSD parameters corresponding to the cloud precipitation
types, mass–power relations for snow and graupel, and melting modeling. We
present and validate the simulation results for a cold-front stratiform
cloud and a deep convective process with observations from a W-band cloud
profiling radar (CPR) on the CloudSat satellite. The simulated bright band
features, echo structure, and intensity showed a good agreement with the
CloudSat observations; the average relative error of radar reflectivity in
the vertical profile was within 20 %. Our results quantify the
uncertainty in the millimeter-wave radar echo simulation that may be caused
by the physical model parameters and provide a scientific basis for optimal
forward modeling. They also provide suggestions for prior physical parameter constraints for the retrieval of the microphysical properties of clouds and precipitation.</p
Exact results of the mixed-spin Ising model on a decorated square lattice with two different decorating spins of integer magnitudes
The mixed-spin Ising model on a decorated square lattice with two different
decorating spins of the integer magnitudes S_B = 1 and S_C = 2 placed on
horizontal and vertical bonds of the lattice, respectively, is examined within
an exact analytical approach based on the generalized decoration-iteration
mapping transformation. Besides the ground-state analysis, finite-temperature
properties of the system are also investigated in detail. The most interesting
numerical result to emerge from our study relates to a striking critical
behaviour of the spontaneously ordered 'quasi-1D' spin system. It was found
that this quite remarkable spontaneous order arises when one sub-lattice of the
decorating spins (either S_B or S_C) tends towards their 'non-magnetic' spin
state S = 0 and the system becomes disordered only upon further single-ion
anisotropy strengthening. The effect of single-ion anisotropy upon the
temperature dependence of the total and sub-lattice magnetization is also
particularly investigated.Comment: 17 pages, 6 figure
New Family of Robust 2D Topological Insulators in van der Waals Heterostructures
We predict a new family of robust two-dimensional (2D) topological insulators
in van der Waals heterostructures comprising graphene and chalcogenides BiTeX
(X=Cl, Br and I). The layered structures of both constituent materials produce
a naturally smooth interface that is conducive to proximity induced new
topological states. First principles calculations reveal intrinsic
topologically nontrivial bulk energy gaps as large as 70-80 meV, which can be
further enhanced up to 120 meV by compression. The strong spin-orbit coupling
in BiTeX has a significant influence on the graphene Dirac states, resulting in
the topologically nontrivial band structure, which is confirmed by calculated
nontrivial Z2 index and an explicit demonstration of metallic edge states. Such
heterostructures offer an unique Dirac transport system that combines the 2D
Dirac states from graphene and 1D Dirac edge states from the topological
insulator, and it offers new ideas for innovative device designs
245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link
Funding: UK EPSRC (EP/K00042X/I, EP/R005281/1, EP/R007101/1 and EP/R035164/1); Marie Skłodowska Curie Individual Fellowship (703387).Organic optoelectronic devices combine high-performance, simple fabrication and distinctive form factors. They are widely integrated in smart devices and wearables as flexible, high pixel density organic light emitting diode (OLED) displays, and may be scaled to large area by roll-to-roll printing for lightweight solar power systems. Exceptionally thin and flexible organic devices may enable future integrated bioelectronics and security features. However, as a result of their low charge mobility, these are generally thought to be slow devices with microsecond response times, thereby limiting their full scope of potential applications. By investigating the factors limiting their bandwidth and overcoming them, we demonstrate here exceptionally fast OLEDs with bandwidths in the hundreds of MHz range. This opens up a wide range of potential applications in spectroscopy, communications, sensing and optical ranging. As an illustration of this, we have demonstrated visible light communication using OLEDs with data rates exceeding 1 gigabit per second.Publisher PDFPeer reviewe
High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopy
We report optical spectroscopic measurements on electron- and hole-doped
BaFe2As2. We show that the compounds in the normal state are not simple metals.
The optical conductivity spectra contain, in addition to the free carrier
response at low frequency, a temperature-dependent gap-like suppression at
rather high energy scale near 0.6 eV. This suppression evolves with the
As-Fe-As bond angle induced by electron- or hole-doping. Furthermore, the
feature becomes much weaker in the Fe-chalcogenide compounds. We elaborate that
the feature is caused by the strong Hund's rule coupling effect between the
itinerant electrons and localized electron moment arising from the multiple Fe
3d orbitals. Our experiments demonstrate the coexistence of itinerant and
localized electrons in iron-based compounds, which would then lead to a more
comprehensive picture about the metallic magnetism in the materials.Comment: 6 pages, 7 figure
- …