3,881 research outputs found

    Formulating the Net Gain of MISO-SFN in the Presence of Self-Interferences

    Get PDF
    In this study, an analytical formula for multiple-input single-output single frequency network gain (MISO-SFNG) is investigated. To formulate the net MISO-SFNG, we derived the average signal to interference plus noise ratio (SINR) where the gain achieved by the distributed MISO diversity as a function of power imbalance is curve-fitted. Further, we analyzed the losses owing to self-interferences resulting from the delay spread and imperfect channel estimation. We verified the accuracy and effectiveness of the derived formula by comparing the measurement results with the analytical results. The derived formula helps to understand how various system factors affect the gain under a given condition. The formula can be used to evaluate the MISO-SFNG and to predict the MISO-SFN coverage in various system configurations

    The Stream-Stream Collision after the Tidal Disruption of a Star Around a Massive Black Hole

    Get PDF
    A star can be tidally disrupted around a massive black hole. It has been known that the debris forms a precessing stream, which may collide with itself. The stream collision is a key process determining the subsequent evolution of the stellar debris: if the orbital energy is efficiently dissipated, the debris will eventually form a circular disk (or torus). In this paper, we have numerically studied such stream collision resulting from the encounter between a 10^6 Msun black hole and a 1 Msun normal star with a pericenter radius of 100 Rsun. A simple treatment for radiative cooling has been adopted for both optically thick and thin regions. We have found that approximately 10 to 15% of the initial kinetic energy of the streams is converted into thermal energy during the collision. The angular momentum of the incoming stream is increased by a factor of 2 to 3, and such increase, together with the decrease in kinetic energy, significantly helps the circularization process. Initial luminosity burst due to the collision may reach as high as 10^41 erg/sec in 10^4 sec, after which the luminosity increases again (but slowly this time) to a steady value of a few 10^40 erg/sec in a few times of 10^5 sec. The radiation from the system is expected to be close to Planckian with effective temperature of \~10^5K.Comment: 19 pages including 12 figures; Accepted for publication in Ap

    Lyman alpha line formation in starbursting galaxies II. Extremely Thick, Dustless, and Static HI Media

    Full text link
    The Lya line transfer in an extremely thick medium of neutral hydrogen is investigated by adopting an accelerating scheme in our Monte Carlo code to skip a large number of core or resonant scatterings. This scheme reduces computing time significantly with no sacrifice in the accuracy of the results. We applied this numerical method to the Lya transfer in a static, uniform, dustless, and plane-parallel medium. Two types of photon sources have been considered, the midplane source and the uniformly distributed sources. The emergent profiles show double peaks and absorption trough at the line-center. We compared our results with the analytic solutions derived by previous researchers, and confirmed that both solutions are in good agreement with each other. We investigated the directionality of the emergent Lya photons and found that limb brightening is observed in slightly thick media while limb darkening appears in extremely thick media. The behavior of the directionality is noted to follow that of the Thomson scattered radiation in electron clouds, because both Lya wing scattering and Thomson scattering share the same Rayleigh scattering phase function. The mean number of wing scatterings just before escape is in exact agreement with the prediction of the diffusion approximation. The Lya photons constituting the inner part of the emergent profiles follow the relationship derived from the diffusion approximation. We present a brief discussion on the application of our results to the formation of Lya broad absorption troughs and P-Cygni type Lya profiles seen in the UV spectra of starburst galaxies.Comment: 24 papges, 12 figures, The revised version submitted to Ap

    N-Body Simulations of Compact Young Clusters near the Galactic Center

    Get PDF
    We investigate the dynamical evolution of compact young star clusters (CYCs) near the Galactic center (GC) using Aarseth's Nbody6 codes. The relatively small number of stars in the cluster (5,000-20,000) makes real-number N-body simulations for these clusters feasible on current workstations. Using Fokker-Planck (F-P) models, Kim, Morris, & Lee (1999) have made a survey of cluster lifetimes for various initial conditions, and have found that clusters with a mass <~ 2x10^4 Msun evaporate in ~10 Myr. These results were, however, to be confirmed by N-body simulations because some extreme cluster conditions, such as strong tidal forces and a large stellar mass range participating in the dynamical evolution, might violate assumptions made in F-P models. Here we find that, in most cases, the CYC lifetimes of previous F-P calculations are 5-30% shorter than those from the present N-body simulations. The comparison of projected number density profiles and stellar mass functions between N-body simulations and HST/NICMOS observations by Figer et al. (1999) suggests that the current tidal radius of the Arches cluster is ~1.0 pc, and the following parameters for the initial conditions of that cluster: total mass of 2x10^4 Msun and mass function slope for intermediate-to-massive stars of 1.75 (the Salpeter function has 2.35). We also find that the lower stellar mass limit, the presence of primordial binaries, the amount of initial mass segregation, and the choice of initial density profile (King or Plummer models) do not significantly affect the dynamical evolution of CYCs.Comment: 20 pages including 6 figures, To appear in ApJ, Dec 20 issu

    Self Heating of Corona by Electrostatic Fields Driven by Sheared Flows

    Full text link
    A mechanism of self-heating of solar corona is pointed out. It is shown that the free energy available in the form of sheared flows gives rise to unstable electrostatic waves which accelerate the particles and heat them. The electrostatic perturbations take place through two processes (a) by purely growing sheared flow-driven instability and (b) by sheared flow-driven drift waves. These processes occur throughout the corona and hence the self-heating is very important in this plasma. These instabilities can give rise to local electrostatic potentials φ\varphi of the order of about 100 volts or less within 3×10−23\times10^{-2} to a few seconds time if the initial perturbation is assumed to be about one percent that is eφTe≃10−2\frac{e\varphi}{T_{e}}\simeq10^{-2}. The components of wave lengths in the direction perpendicular to external magnetic field B0\textbf{B}_{0} vary from about 10m to 1m. The purely growing instability creates electrostatic fields by sheared flows even if the density gradient does not exist whereas the density gradient is crucial for the concurrence of drift wave instability. Subject headings: Sun: self-heating of corona, sheared flow-driven instability, drift waves

    Constant cross section of loops in the solar corona

    Full text link
    The corona of the Sun is dominated by emission from loop-like structures. When observed in X-ray or extreme ultraviolet emission, these million K hot coronal loops show a more or less constant cross section. In this study we show how the interplay of heating, radiative cooling, and heat conduction in an expanding magnetic structure can explain the observed constant cross section. We employ a three-dimensional magnetohydrodynamics (3D MHD) model of the corona. The heating of the coronal plasma is the result of braiding of the magnetic field lines through footpoint motions and subsequent dissipation of the induced currents. From the model we synthesize the coronal emission, which is directly comparable to observations from, e.g., the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO). We find that the synthesized observation of a coronal loop seen in the 3D data cube does match actually observed loops in count rate and that the cross section is roughly constant, as observed. The magnetic field in the loop is expanding and the plasma density is concentrated in this expanding loop; however, the temperature is not constant perpendicular to the plasma loop. The higher temperature in the upper outer parts of the loop is so high that this part of the loop is outside the contribution function of the respective emission line(s). In effect, the upper part of the plasma loop is not bright and thus the loop actually seen in coronal emission appears to have a constant width. From this we can conclude that the underlying field-line-braiding heating mechanism provides the proper spatial and temporal distribution of the energy input into the corona --- at least on the observable scales.Comment: 8 pages, 9 figures, accepted for publication in A&

    Non-ancient solution of the Ricci flow

    Full text link
    For any complete noncompact Kaš\ddot{a}hler manifold with nonnegative and bounded holomorphic bisectional curvature,we provide the necessary and sufficient condition for non-ancient solution to the Ricci flow in this paper.Comment: seven pages, latex fil
    • 

    corecore