1,067 research outputs found
Chiral SU(3) dynamics and -hyperons in the nuclear medium
We present a novel approach to the density dependent mean field and the
spin-orbit interaction of a -hyperon in a nuclear many-body system,
based on flavor-SU(3) in-medium chiral perturbation theory. The leading
long-range -interaction arises from kaon exchange and from two-pion
exchange with a -hyperon in the intermediate state. The empirical
-nucleus potential depth of about MeV is well reproduced with a
single cutoff scale, GeV, effectively representing all
short-distance (high-momentum) dynamics not resolved at scales characteristic
of the nuclear Fermi momentum. This value of is remarkably
consistent with the one required to reproduce the empirical saturation point of
isospin-symmetric nuclear matter in the same framework. The smallness of the
-nuclear spin-orbit interaction finds a natural (yet novel)
explanation in terms of an almost complete cancellation between short-range
contributions (properly rescaled from the known nucleonic spin-orbit coupling
strength) and long-range terms generated by iterated one-pion exchange with
intermediate -hyperons. The small -mass difference
figures prominently in this context.Comment: 9 pages, 4figure
Calculations of Resonance Coupling Constants in the Scalar Sector of the ENJL Model
We derive the scalar resonance coupling constants of resonance chiral theory
from the Extended Nambu Jona-Lasinio model by using heat-kernel expansion.Comment: 7 page
Evolution of trace gases and particles emitted by a chaparral fire in California
Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO_2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO_2; CO; NO_x; NH_3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O_3 to excess CO in the plume (ΔO_3/ΔCO) increased from −5.13 (±1.13) × 10^(−3) to 10.2 (±2.16) × 10^(−2) in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively) over the same time since emission. Based on the rapid decay of C_2H_4 we infer an in-plume average OH concentration of 5.27 (±0.97) × 10^6 molec cm^(−3), consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH_3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NO_x was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first ~4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO_2) increased by a factor of 2.50 ± 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO_2 decreased sharply for the first hour and then increased slowly with a net decrease of ~20% over 4 h. The fraction of thickly coated rBC particles increased up to ~85% over the 4 h aging period. Decreasing OA accompanied by increased scattering/particle coating in initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations
Precision spectroscopy of pionic 1s states of Sn nuclei and evidence for partial restoration of chiral symmetry in the nuclear medium
Deeply bound 1s states of in Sn were preferentially
observed using the Sn(,He) pion-transfer reaction under the recoil-free
condition. The 1s binding energies and widths were precisely determined, and
were used to deduce the isovector parameter of the s-wave pion-nucleus
potential to be . The observed enhancement
of over the free value ()
indicates a reduction of the chiral order parameter, , at the normal nuclear density, .Comment: 4 pages including 3 postscript figures, RevTeX 4 with multirow.sty,
submitted to Physical Review Letter
Bioassay of Geniculosporium species for Phytophthora megakarya biological control on cacao pod husk pieces
Fungal endophytes (Geniculosporium sp.) isolated from cacao leaves were screened for biological control of Phytophthora megakarya the cacao black pod disease pathogen, using Cacao Pod Husk Pieces (CPHP). CPHP were pre-treated with spore suspensions of Geniculosporium sp. [BC13 (GJS 01- 196), BC108 (GJS 01-192), BC118 (GJS 01-197), BC177 (GJS 01-198)], and were infected with P. megakarya zoospore suspensions (105 zoospores/ml). Effects on P. megakarya were noticed at pod infection, mycelia growth inside infected tissues, and fungal sporulation, that are major stages of the black pod disease cycle on cacao pods. CPHP pre-treated with BC108 expressed the lowest early Infection Index (EII), but could not control disease progress into infected cacao pod husk tissues. On CPHP pre-treated with BC13, average growth rate of the necrosis was significantly reduced, but no control on P. megakarya sporulation was observed, while CPHP pre-treated with BC177 significantly reduced P. megakarya sporulation.Key words: Cacao, biological control, Geniculosporium sp, endophytes, Phytophthora megakarya, pod husks pieces
Fully Automatic Expression-Invariant Face Correspondence
We consider the problem of computing accurate point-to-point correspondences
among a set of human face scans with varying expressions. Our fully automatic
approach does not require any manually placed markers on the scan. Instead, the
approach learns the locations of a set of landmarks present in a database and
uses this knowledge to automatically predict the locations of these landmarks
on a newly available scan. The predicted landmarks are then used to compute
point-to-point correspondences between a template model and the newly available
scan. To accurately fit the expression of the template to the expression of the
scan, we use as template a blendshape model. Our algorithm was tested on a
database of human faces of different ethnic groups with strongly varying
expressions. Experimental results show that the obtained point-to-point
correspondence is both highly accurate and consistent for most of the tested 3D
face models
On the Quasiparticle Description of Lattice QCD Thermodynamics
We propose a novel quasiparticle interpretation of the equation of state of
deconfined QCD at finite temperature. Using appropriate thermal masses, we
introduce a phenomenological parametrization of the onset of confinement in the
vicinity of the predicted phase transition. Lattice results of the energy
density, the pressure and the interaction measure of pure SU(3) gauge theory
are excellently reproduced. We find a relationship between the thermal energy
density of the Yang-Mills vacuum and the chromomagnetic condensate _T.
Finally, an extension to QCD with dynamical quarks is discussed. Good agreement
with lattice data for 2, 2+1 and 3 flavour QCD is obtained. We also present the
QCD equation of state for realistic quark masses.Comment: 20 pages, 10 eps figure
Measurement of Spin Correlation Parameters A, A, and A_ at 2.1 GeV in Proton-Proton Elastic Scattering
At the Cooler Synchrotron COSY/J\"ulich spin correlation parameters in
elastic proton-proton (pp) scattering have been measured with a 2.11 GeV
polarized proton beam and a polarized hydrogen atomic beam target. We report
results for A, A, and A_ for c.m. scattering angles between
30 and 90. Our data on A -- the first measurement of this
observable above 800 MeV -- clearly disagrees with predictions of available of
pp scattering phase shift solutions while A and A_ are reproduced
reasonably well. We show that in the direct reconstruction of the scattering
amplitudes from the body of available pp elastic scattering data at 2.1 GeV the
number of possible solutions is considerably reduced.Comment: 4 pages, 4 figure
eta-Nucleus interactions and in-medium properties of N*(1535) in chiral models
The properties of eta-nucleus interaction and their experimental consequences
are investigated with eta-nucleus optical potentials obtained by postulating
the N*(1535) dominance for eta-N system. The N*(1535) properties in nuclear
medium are evaluated by two kinds of chiral effective models based on distinct
pictures of N*(1535). We find that these two models provide qualitatively
different optical potentials of the eta meson, reflecting the in-medium
properties of N*(1535) in these models. In order to compare these models in
physical observables, we calculate spectra of (d,3He) reactions for the eta
mesic nucleus formation with various kinds of target nuclei. We show that the
(d,3He) spectra obtained in these models are significantly different and are
expected to be distinguishable in experiments.Comment: 24 pages, 8 figure
Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV
A phase space coalescence description based on the Wigner-function method for
cluster formation in relativistic nucleus-nucleus collisions is presented. The
momentum distributions of nuclear clusters d,t and He are predicted for central
Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD
transport approach. Transverse expansion leads to a strong shoulder-arm shape
and different inverse slope parameters in the transverse spectra of nuclear
clusters deviating markedly from thermal distributions. A clear ``bounce-off''
event shape is seen: the averaged transverse flow velocities in the reaction
plane are for clusters larger than for protons. The cluster yields
--particularly at low at midrapidities-- and the in-plane (anti)flow of
clusters and pions change if suitably strong baryon potential interactions are
included. This allows to study the transient pressure at high density via the
event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.
- …