1,697 research outputs found

    Thermodynamic Bounds on Efficiency for Systems with Broken Time-reversal Symmetry

    Full text link
    We show that for systems with broken time-reversal symmetry the maximum efficiency and the efficiency at maximum power are both determined by two parameters: a "figure of merit" and an asymmetry parameter. In contrast to the time-symmetric case, the figure of merit is bounded from above; nevertheless the Carnot efficiency can be reached at lower and lower values of the figure of merit and far from the so-called strong coupling condition as the asymmetry parameter increases. Moreover, the Curzon-Ahlborn limit for efficiency at maximum power can be overcome within linear response. Finally, always within linear response, it is allowed to have simultaneously Carnot efficiency and non-zero power.Comment: Final version, 4 pages, 3 figure

    Behavioral and neurobiological consequences of social subjugation during puberty in golden hamsters

    Get PDF
    In golden hamsters, offensive aggression is facilitated by vasopressin and inhibited by serotonin. We tested whether these neurotransmitter systems respond to modifications resulting from the stress of threat and attack (i.e., social subjugation) during puberty. Male golden hamsters were weaned at postnatal day 25 (P25), exposed daily to aggressive adults from P28 to P42, and tested for offensive aggression as young adults (P45). The results showed a context-dependent alteration in aggressive behavior. Subjugated animals were more likely to attack younger and weaker intruders than nonsubjugated controls. Conversely, subjugated animals were less likely to attack animals of similar size and age. After testing, the animals were killed, and their brains were collected to determine whether these behavioral changes are underlined by changes in the vasopressin and serotonin systems. Social subjugation resulted in a 50% decrease in vasopressin levels within the anterior hypothalamus, a site involved in the regulation of aggression. Furthermore, whereas the density of vasopressin-immunoreactive fibers within the area was not significantly altered in subjugated animals, the number of serotonin-immunoreactive varicosities within the anterior hypothalamus and lateral septum was 20% higher in subjugated animals than in their controls. These results establish puberty as a developmental period sensitive to environmental stressors. Furthermore, the results show that changes in the vasopressin and serotonin systems can correlate with behavioral alterations, supporting the role of these two neurotransmitters in the regulation of aggression

    Efficiency at maximum power of thermally coupled heat engines

    Full text link
    We study the efficiency at maximum power of two coupled heat engines, using thermoelectric generators (TEGs) as engines. Assuming that the heat and electric charge fluxes in the TEGs are strongly coupled, we simulate numerically the dependence of the behavior of the global system on the electrical load resistance of each generator in order to obtain the working condition that permits maximization of the output power. It turns out that this condition is not unique. We derive a simple analytic expression giving the relation between the electrical load resistance of each generator permitting output power maximization. We then focuse on the efficiency at maximum power (EMP) of the whole system to demonstrate that the Curzon-Ahlborn efficiency may not always be recovered: the EMP varies with the specific working conditions of each generator but remains in the range predicted by irreversible thermodynamics theory. We finally discuss our results in light of non-ideal Carnot engine behavior.Comment: 11 pages, 7 figure

    A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments

    Full text link
    Most speech and language technologies are trained with massive amounts of speech and text information. However, most of the world languages do not have such resources or stable orthography. Systems constructed under these almost zero resource conditions are not only promising for speech technology but also for computational language documentation. The goal of computational language documentation is to help field linguists to (semi-)automatically analyze and annotate audio recordings of endangered and unwritten languages. Example tasks are automatic phoneme discovery or lexicon discovery from the speech signal. This paper presents a speech corpus collected during a realistic language documentation process. It is made up of 5k speech utterances in Mboshi (Bantu C25) aligned to French text translations. Speech transcriptions are also made available: they correspond to a non-standard graphemic form close to the language phonology. We present how the data was collected, cleaned and processed and we illustrate its use through a zero-resource task: spoken term discovery. The dataset is made available to the community for reproducible computational language documentation experiments and their evaluation.Comment: accepted to LREC 201

    Kinetic theory of point vortex systems from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy

    Get PDF
    Kinetic equations are derived from the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for point vortex systems in an infinite plane. As the level of approximation for the Landau equation, the collision term of the kinetic equation derived coincides with that by Chavanis ({\it Phys. Rev. E} {\bf 64}, 026309 (2001)). Furthermore, we derive a kinetic equation corresponding to the Balescu-Lenard equation for plasmas, using the theory of the Fredholm integral equation. For large NN, this kinetic equation is reduced to the Landau equation above.Comment: 10 pages, No figures. To be published in Physical Review E, 76-

    Statistical approach to dislocation dynamics: From dislocation correlations to a multiple-slip continuum plasticity theory

    Get PDF
    Due to recent successes of a statistical-based nonlocal continuum crystal plasticity theory for single-glide in explaining various aspects such as dislocation patterning and size-dependent plasticity, several attempts have been made to extend the theory to describe crystals with multiple slip systems using ad-hoc assumptions. We present here a mesoscale continuum theory of plasticity for multiple slip systems of parallel edge dislocations. We begin by constructing the Bogolyubov-Born-Green-Yvon-Kirkwood (BBGYK) integral equations relating different orders of dislocation correlation functions in a grand canonical ensemble. Approximate pair correlation functions are obtained for single-slip systems with two types of dislocations and, subsequently, for general multiple-slip systems of both charges. The effect of the correlations manifests itself in the form of an entropic force in addition to the external stress and the self-consistent internal stress. Comparisons with a previous multiple-slip theory based on phenomenological considerations shall be discussed.Comment: 12 pages, 3 figure

    Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles

    Full text link
    In this paper we study a continuum version of the Potts model. Particles are points in R^d, with a spin which may take S possible values, S being at least 3. Particles with different spins repel each other via a Kac pair potential. In mean field, for any inverse temperature there is a value of the chemical potential at which S+1 distinct phases coexist. For each mean field pure phase, we introduce a restricted ensemble which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin Shlosman theory, we get uniqueness and exponential decay of correlations when the range of the interaction is large enough. In a second paper, we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S+1 extremal DLR measures.Comment: 72 pages, 1 figur

    Visibility diagrams and experimental stripe structure in the quantum Hall effect

    Full text link
    We analyze various properties of the visibility diagrams that can be used in the context of modular symmetries and confront them to some recent experimental developments in the Quantum Hall Effect. We show that a suitable physical interpretation of the visibility diagrams which permits one to describe successfully the observed architecture of the Quantum Hall states gives rise naturally to a stripe structure reproducing some of the experimental features that have been observed in the study of the quantum fluctuations of the Hall conductance. Furthermore, we exhibit new properties of the visibility diagrams stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil

    Theoretical search for Chevrel phase based thermoelectric materials

    Full text link
    We investigate the thermoelectric properties of some semiconducting Chevrel phases. Band structure calculations are used to compute thermopowers and to estimate of the effects of alloying and disorder on carrier mobility. Alloying on the Mo site with transition metals like Re, Ru or Tc to reach a semiconducting composition causes large changes in the electronic structure at the Fermi level. Such alloys are expected to have low carrier mobilities. Filling with transition metals was also found to be incompatible with high thermoelectric performance based on the calculated electronic structures. Filling with Zn, Cu, and especially with Li was found to be favorable. The calculated electronic structures of these filled Chevrel phases are consistent with low scattering of carriers by defects associated with the filling. We expect good mobility and high thermopower in materials with the composition close to (Li,Cu)4_4Mo6_6Se8_8, particularly when Li-rich, and recommend this system for experimental investigation.Comment: 4 two-column pages, 4 embedded ps figure
    corecore