238 research outputs found
Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran
To evaluate satellite rainfall estimates of Tropical Rain
Measurement Mission (TRMM) level 3 output (3B42) (TRMM_3B42) over Iran
(20°â€“45° N, 40°â€“65° E), we compared these data with
high-resolution gridded precipitation datasets (0.25°×0.25° latitude/longitude) based on rain gauges (Iran Synoptic gauges Version 0902
(IS0902)). Spatial distribution of mean annual and mean seasonal rainfall in
both IS0902 and TRMM_3B42 from 1998 to 2006 shows two main rainfall
patterns along the Caspian Sea and over the Zagros Mountains. Scatter plots
of annual average rainfall from IS0902 versus TRMM_3B42 for each 0.25°×0.25° grid cell
over the entire country (25°â€“40° N,
45°â€“60° E), along the Caspian Sea (35°â€“40° N, 48°â€“56° E), and
over the Zagros Mountains (28°â€“37° N, 46°â€“55° E)
were derived. For the entire country, the Caspian Sea region, and the Zagros
Mountains, TRMM_3B42 underestimates mean annual precipitation by 0.17,
0.39, and 0.15 mm day<sup>−1</sup>, respectively, and the mean annual rainfall
spatial correlation coefficients are 0.77, 0.57, and 0.75, respectively. The
mean annual precipitation temporal correlation coefficient for IS0902 and
TRMM_3B42 is ~0.8 in the area along the Zagros Mountains, and ~0.6
in the Caspian Sea and desert regions
Impact of transient groundwater storage on the discharge of Himalayan rivers
International audienceIn the course of the transfer of precipitation into rivers, water is temporarily stored in reservoirs with different residence times such as soils, groundwater, snow and glaciers. In the central Himalaya, the water budget is thought to be primarily controlled by monsoon rainfall, snow and glacier melt, and secondarily by evapotranspiration. An additional contribution from deep groundwater has been deduced from the chemistry of Himalayan rivers, but its importance in the annual water budget remains to be evaluated. Here we analyse records of daily precipitation and discharge within twelve catchments in Nepal over about 30 years. We observe annual hysteresis loops--that is, a time lag between precipitation and discharge--in both glaciated and unglaciated catchments and independent of the geological setting. We infer that water is stored temporarily in a reservoir with characteristic response time of about 45 days, suggesting a diffusivity typical of fractured basement aquifers. We estimate this transient storage capacity at about 28km3 for the three main Nepal catchments; snow and glacier melt contribute around 14km3yr-1, about 10% of the annual river discharge. We conclude that groundwater storage in a fractured basement influences significantly the Himalayan river discharge cycle
Recommended from our members
On northern-hemisphere wave patterns associated with winter rainfall events in China
During extended winter (November-April) 43% of the intraseasonal rainfall variability in China is explained by three spatial patterns of temporally coherent rainfall. These patterns were identified with Empirical Orthogonal Teleconnection (EOT) analysis of observed 1982-2007 pentad rainfall anomalies and connected to midlatitude disturbances. However, examination of individual strong EOT events shows that there is substantial inter-event variability in their dynamical evolution, which implies that precursor patterns found in regressions cannot serve as useful predictors. To understand the physical nature and origins of the extratropical precursors, the EOT technique is applied to six simulations of the Met Office Unified Model at horizontal resolutions of 200--40 km and with and without air-sea coupling. All simulations reproduce the observed precursor patterns in regressions, indicating robust underlying dynamical processes. Further investigation into the dynamics associated with observed patterns shows that Rossby wave dynamics can explain the large inter-event variability. The results suggest that the apparently slowly evolving or quasi-stationary waves in regression analysis are a statistical amalgamation of more rapidly propagating waves with a variety of origins and properties
The effect of radio-adaptive doses on HT29 and GM637 cells
<p>Abstract</p> <p>Background</p> <p>The shape of the dose-response curve at low doses differs from the linear quadratic model. The effect of a radio-adaptive response is the centre of many studies and well known inspite that the clinical applications are still rarely considered.</p> <p>Methods</p> <p>We studied the effect of a low-dose pre-irradiation (0.03 Gy – 0.1 Gy) alone or followed by a 2.0 Gy challenging dose 4 h later on the survival of the HT29 cell line (human colorectal cancer cells) and on the GM637 cell line (human fibroblasts).</p> <p>Results</p> <p>0.03 Gy given alone did not have a significant effect on both cell lines, the other low doses alone significantly reduced the cell survival. Applied 4 h before the 2.0 Gy fraction, 0.03 Gy led to a significant induced radioresistance in GM637 cells, but not in HT29 cells, and 0.05 Gy led to a significant hyperradiosensitivity in HT29 cells, but not in GM637 cells.</p> <p>Conclusion</p> <p>A pre-irradiation with 0.03 Gy can protect normal fibroblasts, but not colorectal cancer cells, from damage induced by an irradiation of 2.0 Gy and the application of 0.05 Gy prior to the 2.0 Gy fraction can enhance the cell killing of colorectal cancer cells while not additionally damaging normal fibroblasts. If these findings prove to be true in vivo as well this may optimize the balance between local tumour control and injury to normal tissue in modern radiotherapy.</p
Testing of aspheric surfaces with computer generated holograms
Aspherical surfaces are becoming more important and can even be mass producted. There is a need for flexible test methods of high accuracy. The paper describes the combination of a computer generated holograms with a partially compensating lens as a powerful tool. An example for testing a steep aspheric surface will be given
Recommended from our members
A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part II: intraseasonal variability
The causes of subseasonal precipitation variability in China are investigated using observations and reanalysis data for extended winter (November–April) and summer (May–October) seasons from 1982 to 2007. For each season, the three dominant regions of coherent intraseasonal variability are identified with Empirical Orthogonal Teleconnection (EOT) analysis. While previous studies have focused on particular causes for precipitation variability or on specific regions, here a comprehensive analysis is carried out with an objective method. Furthermore, the associated rainfall anomaly timeseries are tied to specific locations in China, which facilitates their interpretation. To understand the underlying processes associated with spatially coherent patterns of rainfall variability, fields from observations and reanalysis are regressed onto EOT timeseries. The three dominant patterns in winter together explain 43% of the total space–time variance and have their origins in midlatitude disturbances that appear two pentads in advance. Winter precipitation variability along the Yangtze River is associated with wave trains originating over the Atlantic and northern Europe, while precipitation variability in southeast China is connected to the Mediterranean storm track. In summer, all patterns have a strong relationship with the Boreal Summer Intraseasonal Oscillation and are modulated by the seasonal cycle of the East Asian summer monsoon. The wet and dry phases of the regional patterns can substantially modulate the frequency of daily rainfall across China. The discovered links between weather patterns, precursors, and effects on local and remote precipitation may provide a valuable basis for hydrological risk assessments and the evaluation of numerical weather prediction models
Time spent in sedentary posture is associated with waist circumference and cardiovascular risk
Background
The relationship between metabolic risk and time spent sitting, standing and stepping has not been well established. The present study aimed to determine associations of objectively measured time spent siting, standing and stepping, with coronary heart disease (CHD) risk.
Methods
A cross-sectional study of healthy non-smoking Glasgow postal workers, n=111 (55 office-workers, 5 women, and 56 walking/delivery-workers, 10 women), who wore activPAL physical activity monitors for seven days. Cardiovascular risks were assessed by metabolic syndrome categorisation and 10-y PROCAM risk.
Results
Mean(SD) age was 40(8) years, BMI 26.9(3.9)kg/m-2 and waist circumference 95.4(11.9)cm. Mean(SD) HDL-cholesterol 1.33(0.31), LDL-cholesterol 3.11(0.87), triglycerides 1.23(0.64)mmol/l and 10-y PROCAM risk 1.8(1.7)%. Participants spent mean(SD) 9.1(1.8)h/d sedentary, 7.6(1.2)h/d sleeping, 3.9(1.1)h/d standing and 3.3(0.9)h/d stepping, accumulating 14,708(4,984)steps/d in 61(25) sit-to-stand transitions per day. In univariate regressions - adjusting for age, sex, family history of CHD, shift worked, job type and socio-economic status - waist circumference (p=0.005), fasting triglycerides (p=0.002), HDL-cholesterol (p=0.001) and PROCAM-risk (p=0.047) were detrimentally associated with sedentary time. These associations remained significant after further adjustment for sleep, standing and stepping in stepwise regression models. However, after further adjustment for waist circumference, the associations were not significant. Compared to those without the metabolic syndrome, participants with the metabolic syndrome were significantly less active – fewer steps, shorter stepping duration and longer time sitting. Those with no metabolic syndrome features walked >15,000 steps/day, or spent >7h/day upright.
Conclusion
Longer time spent in sedentary posture is significantly associated with higher CHD risk and larger waist circumference
Recommended from our members
Indian summer monsoon onset forecast skill in the UK Met Office initialized coupled seasonal forecasting system (GloSea5-GC2)
Accurate and precise forecasting of the Indian monsoon is important for the socio-economic security of India, with improvements in agriculture and associated sectors from prediction of the monsoon onset. In this study we establish the skill of the UK Met Office coupled initialized global seasonal forecasting system, GloSea5-GC2, in forecasting Indian monsoon onset. We build on previous work that has demonstrated the good skill of GloSea5 at forecasting interannual variations of the seasonal mean Indian monsoon using measures of large-scale circulation and local precipitation. We analyze the summer hindcasts from a set of three springtime start-dates in late April/early May for the 20-year hindcast period (1992-2011). The hindcast set features at least fifteen ensemble members for each year and is analyzed using five different objective monsoon indices. These indices are designed to examine large and local-scale measures of the monsoon circulation, hydrological changes, tropospheric temperature gradient, or rainfall for single value (area-averaged) or grid-point measures of the Indian monsoon onset. There is significant correlation between onset dates in the model and those found in reanalysis. Indices based on large-scale dynamic and thermodynamic indices are better at estimating monsoon onset in the model rather than local-scale dynamical and hydrological indices. This can be attributed to the model's better representation of large-scale dynamics compared to local-scale features. GloSea5 may not be able to predict the exact date of monsoon onset over India, but this study shows that the model has a good ability at predicting category-wise monsoon onset, using early, normal or late tercile categories. Using a grid-point local rainfall onset index, we note that the forecast skill is highest over parts of central India, the Gangetic plains, and parts of coastal India - all zones of extensive agriculture in India. El Niño Southern Oscillation (ENSO) forcing in the model improves the forecast skill of monsoon onset when using a large-scale circulation index, with late monsoon onset coinciding with El Niño conditions and early monsoon onset more common in La Niña years. The results of this study suggest that GloSea5's ensemble-mean forecast may be used for reliable Indian monsoon onset prediction a month in advance despite systematic model errors
H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues
A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues
- …