8,200 research outputs found
A New Method for Calculating Arrival Distribution of Ultra-High Energy Cosmic Rays above 10^19 eV with Modifications by the Galactic Magnetic Field
We present a new method for calculating arrival distribution of UHECRs
including modifications by the galactic magnetic field. We perform numerical
simulations of UHE anti-protons, which are injected isotropically at the earth,
in the Galaxy and record the directions of velocities at the earth and outside
the Galaxy for all of the trajectories. We then select some of them so that the
resultant mapping of the velocity directions outside the Galaxy of the selected
trajectories corresponds to a given source location scenario, applying
Liouville's theorem. We also consider energy loss processes of UHE protons in
the intergalactic space. Applying this method to our source location scenario
which is adopted in our recent study and can explain the AGASA observation
above 4 \times 10^{19} eV, we calculate the arrival distribution of UHECRs
including lower energy (E>10^19 eV) ones. We find that our source model can
reproduce the large-scale isotropy and the small-scale anisotropy on UHECR
arrival distribution above 10^19 eV observed by the AGASA. We also demonstrate
the UHECR arrival distribution above 10^19 eV with the event number expected by
future experiments in the next few years. The interesting feature of the
resultant arrival distribution is the arrangement of the clustered events in
the order of their energies, reflecting the directions of the galactic magnetic
field. This is also pointed out by Alvarez-Muniz et al.(2002). This feature
will allow us to obtain some kind of information about the composition of
UHECRs and the magnetic field with increasing amount of data.Comment: 10 pages, 8 figures, to appear in the Astrophysical Journa
Simulation Study on JLEIC High Energy Bunched Electron Cooling
In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during the collision at the collider ring. Different with other electron coolers using DC electron beam, the proposed electron cooler at the JLEIC ion collider ring uses high energy bunched electron beam, provided by an ERL. In this paper, we report some recent simulation study on how the electron cooling rate will be affected by the bunched electron beam properties, such as the correlation between the longitudinal position and momentum, the bunch size, and the Larmor emittance
Optimal Principal Component Analysis in Distributed and Streaming Models
We study the Principal Component Analysis (PCA) problem in the distributed
and streaming models of computation. Given a matrix a
rank parameter , and an accuracy parameter , we
want to output an orthonormal matrix for which where is the best rank- approximation to .
This paper provides improved algorithms for distributed PCA and streaming
PCA.Comment: STOC2016 full versio
Assessment of female sex as a risk factor in atrial fibrillation in Sweden: nationwide retrospective cohort study
Objective To determine whether women with atrial fibrillation have a higher risk of stroke than men
Spatial mapping of bleaching in a metal organic plasmon converter
Hybrid nanophotonic elements, fabricated by organic and inorganic materials, are going to be key components of modern devices. Coupled systems of photoemitters with a plasmonic waveguide serve the demand for nanoscopic frequency converters. However, processes like the degradation of the photoemitters via photobleaching occur and need to be monitored and controlled, to realize future successful devices. We introduce a hybrid perylene diimide silver nanowire as plasmon frequency converter. A versatile method is presented to monitor and analyze the bleaching process. It is based on a time series of photoluminescence images, during the operation of a single converter. An analytical model is applied on the data and unveils that the photobleaching rate is constant and independent of the operation of the plasmon converte
Sodium oxybate therapy provides multidimensional improvement in fibromyalgia: results of an international phase 3 trial
Background: Fibromyalgia is characterised by chronic musculoskeletal pain and multiple symptoms including fatigue, multidimensional function impairment, sleep disturbance and tenderness. Along with pain and fatigue, non-restorative sleep is a core symptom of fibromyalgia. Sodium oxybate (SXB) is thought to reduce non-restorative sleep abnormalities. This study evaluated effects of SXB on fibromyalgia-related pain and other symptoms.
Methods: 573 patients with fibromyalgia according to 1990 American College of Rheumatology criteria were enrolled at 108 centres in eight countries. Subjects were randomly assigned to placebo, SXB 4.5 g/night or SXB 6 g/night. The primary efficacy endpoint was the proportion of subjects with ≥30% reduction in pain visual analogue scale from baseline to treatment end. Other efficacy assessments included function, sleep quality, effect of sleep on function, fatigue, tenderness, health-related quality of life and subject's impression of change in overall wellbeing.
Results: Significant improvements in pain, sleep and other symptoms associated with fibromyalgia were seen in SXB treated subjects compared with placebo. The proportion of subjects with ≥30% pain reduction was 42.0% for SXB4.5 g/night (p=0.002) and 51.4% for SXB6 g/night (p<0.001) versus 26.8% for placebo. Quality of sleep (Jenkins sleep scale) improved by 20% for SXB4.5 g/night (p≤0.001) and 25% for SXB6 g/night (p≤0.001) versus 0.5% for placebo. Adverse events with an incidence ≥5% and twice placebo were nausea, dizziness, vomiting, insomnia, anxiety, somnolence, fatigue, muscle spasms and peripheral oedema.
Conclusion: These results, combined with findings from previous phase 2 and 3 studies, provide supportive evidence that SXB therapy affordsimportant benefits across multiple symptoms in subjects with fibromyalgia
Detection and characterization of local inverted repeats regularities
To explore the inverted repeats regularities along the genome sequences, we propose a sliding window method to extract the concentration scores of inverted repeats periodic regularities and the total mass of possible inverted repeats pairs. We apply the method to the human genome and locate the regions with the potential for the formation of large number of hairpin/cruciform structures. The number of found windows with periodic regularities is small and the patterns of occurrence are chromosome specific.publishe
Molecular evolution of glycoside hydrolase genes in the Western corn rootworm (Diabrotica virgifera virgifera).
Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tCellulose is an important nutritional resource for a number of insect herbivores. Digestion of cellulose and other polysaccharides in plant-based diets requires several types of enzymes including a number of glycoside hydrolase (GH) families. In a previous study, we showed that a single GH45 gene is present in the midgut tissue of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). However, the presence of multiple enzymes was also suggested by the lack of a significant biological response when the expression of the gene was silenced by RNA interference. In order to clarify the repertoire of cellulose-degrading enzymes and related GH family proteins in D. v. virgifera, we performed next-generation sequencing and assembled transcriptomes from the tissue of three different developmental stages (eggs, neonates, and third instar larvae). Results of this study revealed the presence of seventy-eight genes that potentially encode GH enzymes belonging to eight families (GH45, GH48, GH28, GH16, GH31, GH27, GH5, and GH1). The numbers of GH45 and GH28 genes identified in D. v. virgifera are among the largest in insects where these genes have been identified. Three GH family genes (GH45, GH48, and GH28) are found almost exclusively in two coleopteran superfamilies (Chrysomeloidea and Curculionoidea) among insects, indicating the possibility of their acquisitions by horizontal gene transfer rather than simple vertical transmission from ancestral lineages of insects. Acquisition of GH genes by horizontal gene transfers and subsequent lineage-specific GH gene expansion appear to have played important roles for phytophagous beetles in specializing on particular groups of host plants and in the case of D. v. virgifera, its close association with maize.Consortium for Plant Biotechnology ResearchPioneer Hi-Bred Internationa
The phase-space distribution of infalling dark matter subhalos
We use high-resolution numerical simulations to study the physical properties
of subhalos when they merge into their host halos. An improved algorithm is
used to identify the subhalos. We then examine their spatial and velocity
distributions in spherical and triaxial halo models. We find that the accretion
of satellites preferentially occurs along the major axis and perpendicular to
the spin axis of the host halo. Furthermore, the massive subhalos show a
stronger preference to be accreted along the major axis of the host halo than
the low-mass ones. Approximate fitting formulae are provided for the physical
properties of subhalos. Combined with analytical and semi-analytic techniques,
these empirical formulae provide a useful basis for studying the subsequent
evolution of subhalos and satellite galaxies in their hosts. Future studies
should however account for satellites that may not be undergoing the first
infall in their evolution.Comment: revised version in press in MN with added material and references, 21
pages and 25 figure
Equilibrium states and chaos in an oscillating double-well potential
We investigate numerically parametrically driven coupled nonlinear Schrödinger equations modeling the dynamics of coupled wave fields in a periodically oscillating double-well potential. The equations describe, among other things, two coupled periodically curved optical waveguides with Kerr nonlinearity or Bose-Einstein condensates in a double-well potential that is shaken horizontally and periodically in time. In particular, we study the persistence of equilibrium states of the undriven system due to the presence of the parametric drive. Using numerical continuations of periodic orbits and calculating the corresponding Floquet multipliers, we find that the drive can (de)stabilize a continuation of an equilibrium state indicated by the change in the (in)stability of the orbit, showing that parametric drives can provide a powerful control to nonlinear (optical- or matter-wave-) field tunneling. We also discuss the appearance of chaotic regions reported in previous studies that is due to destabilization of a periodic orbit. Analytical approximations based on an averaging method are presented. Using perturbation theory, the influence of the drive on the symmetry-breaking bifurcation point is analyzed. © 2014 American Physical Society
- …