13 research outputs found

    A recombinant antibody fragment directed to the thymic stromal lymphopoietin receptor (CRLF2) efficiently targets pediatric Philadelphia chromosome-like acute lymphoblastic leukemia

    No full text
    Antibody fragments are promising building blocks for developing targeted therapeutics, thus improving treatment efficacy while minimising off-target toxicity. Despite recent advances in targeted therapeutics, patients with Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), a high-risk malignancy, lack specific and effective targeted treatments. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in 50% of Ph-like ALL cases, conferring the survival of leukemia blasts through activation of the JAK/STAT signalling pathway. Targeting such a vital cell-surface protein could result in potent anti-leukaemic efficacy and reduce the likelihood of relapse associated with antigen loss. Herein, we developed a novel single-chain variable fragment (scFv) against CRLF2 based on a monoclonal antibody raised against the recombinant extracellular domain of human TSLPRα chain. The scFv fragment demonstrated excellent binding affinity with CRLF2 protein in the nanomolar range. Cellular association studies in vitro using an inducible CRLF2 knockdown cell line and ex vivo using patient-derived xenografts revealed the selective association of the scFv with CRLF2. The fragment exhibited significant receptor antagonistic effects on STAT5 signalling, suggesting possible therapeutic implications in vivo. This study is the first to describe the potential use of a novel scFv for targeting Ph-like ALL

    Identification of a pharyngeal mucosal lymphoid organ in zebrafish and other teleosts: Tonsils in fish?

    Get PDF
    International audienceThe constant exposure of the fish branchial cavity to aquatic pathogens causes local mucosal immune responses to be extremely important for their survival. Here, we used a marker for T lymphocytes/natural killer (NK) cells (ZAP70) and advanced imaging techniques to investigate the lymphoid architecture of the zebrafish branchial cavity. We identified a sub-pharyngeal lymphoid organ, which we tentatively named "Nemausean lymphoid organ" (NELO). NELO is enriched in T/NK cells, plasma/B cells, and antigen-presenting cells embedded in a network of reticulated epithelial cells. The presence of activated T cells and lymphocyte proliferation, but not V(D)J recombination or hematopoiesis, suggests that NELO is a secondary lymphoid organ. In response to infection, NELO displays structural changes including the formation of T/NK cell clusters. NELO and gill lymphoid tissues form a cohesive unit within a large mucosal lymphoid network. Collectively, we reveal an unreported mucosal lymphoid organ reminiscent of mammalian tonsils that evolved in multiple teleost fish famili

    Ab Initio Transport Calculations for Single-Atom Copper Junctions in the Presence of Hydrogen Chloride

    No full text
    We study the transport properties of single-atom-thick Cu wires submerged in an electrochemical solvent containing HCl. As a first step, we investigate the stability of hydrogen coadsorbing with chlorine on the Cu(111) surface in an implicit electrochemical environment. We find that adding hydrogen to a Cl-covered Cu surface is energetically unfavorable. The result serves as an estimate for the number of Cl atoms that adsorb near the single-atom wire. We use it to construct model junctions (Cu wire plus adsorbates), the electron transport properties of which we investigate with density functional theory. We find that the Cl and H adsorbates tend to deplete the density of states of the Cu wire near the Fermi energy. As a consequence, the transmission is reduced. Interestingly, we observe that in the case of H-adsorption, the amount of depletion is quite sensitive to the wire geometry (relaxed vs unrelaxed), but this is not the case with Cl
    corecore