188 research outputs found

    MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels

    Get PDF
    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects

    General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

    Full text link
    An asymptotic method for finding instabilities of arbitrary dd-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of 2- and 3-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order one. The performed analysis explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E (April 1st, 1996

    The common VWF single nucleotide variants c.2365A>G and c.2385T>C modify VWF biosynthesis and clearance

    Get PDF
    Plasma levels of von Willebrand factor (VWF) vary considerably in the general population and this variation has been linked to several genetic and environmental factors. Genetic factors include 2 common single nucleotide variants (SNVs) located in VWF, rs1063856 (c.2365A>G) and rs1063857 (c.2385T>C), although to date the mechanistic basis for their association with VWF level is unknown. Using genotypic/phenotypic information from a European healthy control population, in vitro analyses of recombinant VWF expressing both SNVs, and in vivo murine models, this study determined the precise nature of their association with VWF level and investigated the mechanism(s) involved. Possession of either SNV corresponded with a significant increase in plasma VWF in healthy controls (P G on VWF levels was also confirmed in vivo. This increase in VWF protein corresponded to an increase in VWF messenger RNA (mRNA) resulting, in part, from prolonged mRNA half-life. In addition, coinheritance of both SNVs was associated with a lower VWF propeptide-to-VWF antigen ratio in healthy controls (P < .05) and a longer VWF half-life in VWF knockout mice (P < .0001). Both SNVs therefore directly increase VWF plasma levels through a combined influence on VWF biosynthesis and clearance, and may have an impact on disease phenotype in both hemostatic and thrombotic disorders

    Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model

    Full text link
    Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemical systems with an S-shaped current-voltage characteristic under galvanostatic control are studied theoretically on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic control both systems are unstable with respect to the formation of stationary large amplitude current domains. The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in globally coupled bistable systems with subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE http://pre.aps.or

    Prevalence of psychiatric disorders in infertile women and men undergoing in vitro fertilization treatment

    Get PDF
    BACKGROUND: This study was undertaken to determine the prevalence of psychiatric disorders in infertile women and men undergoing in vitro fertilization (IVF) treatment. METHODS: Participants were 1090 consecutive women and men, 545 couples, attending a fertility clinic in Sweden during a two-year period. The Primary Care Evaluation of Mental Disorders (PRIME-MD), based on the Diagnostic and Statistical Manual of Mental Disorders, 4th edn (DSM-IV), was used as the diagnostic tool for evaluating mood and anxiety disorders. RESULTS: Overall, 862 (79.1%) subjects filled in the PRIME-MD patient questionnaire. Any psychiatric diagnosis was present in 30.8 % of females and in 10.2 % of males in the study sample. Any mood disorder was present in 26.2 % of females and 9.2% of males. Major depression was the most common mood disorder, prevalent in 10.9 % of females and 5.1 % of males. Any anxiety disorder was encountered in 14.8 % of females and 4.9 % males. Only 21 % of the subjects with a psychiatric disorder according to DSM-IV received some form of treatment. CONCLUSIONS: Mood disorders are common in both women and men undergoing IVF treatment. The majority of subjects with a psychiatric disorder were undiagnosed and untreated

    Structure and variability of the Denmark Strait Overflow: Model and observations

    Get PDF
    We report on a combined modeling and observational effort to understand the Denmark Strait Overflow (DSO). Four cruises over the course of 3 years mapped hydrographic properties and velocity fields with high spatial resolution. The observations reveal the mean path of the dense water, as well as the presence of strong barotropic flows, energetic variability, and strong bottom friction and entrainment. A regional sigma coordinate numerical model of interbasin exchange using realistic bottom topography and an overflow forced only by an upstream reservoir of dense fluid is compared with the observations and used to further investigate these processes. The model successfully reproduces the volume transport of dense water at the sill, as well as the 1000-m descent of the dense water in the first 200 km from the sill and the intense eddies generated at 1–3 day intervals. Hydraulic control of the mean flow is indicated by a region supercritical to long gravity waves in the dense layer located approximately 100 km downstream of the sill in both model and observations. In addition, despite the differences in surface forcing, both model and observations exhibit similar transitions from mostly barotropic flow at the sill to a bottom-trapped baroclinic flow downstream, indicating the dominant role of the overflow in determining the full water column dynamics

    A multilocus assay reveals high nucleotide diversity and limited differentiation among Scandinavian willow grouse (Lagopus lagopus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is so far very little data on autosomal nucleotide diversity in birds, except for data from the domesticated chicken and some passerines species. Estimates of nucleotide diversity reported so far in birds have been high (~10<sup>-3</sup>) and a likely explanation for this is the generally higher effective population sizes compared to mammals. In this study, the level of nucleotide diversity has been examined in the willow grouse, a non-domesticated bird species from the order Galliformes, which also holds the chicken. The willow grouse (<it>Lagopus lagopus</it>) has an almost circumpolar distribution but is absent from Greenland and the north Atlantic islands. It primarily inhabits tundra, forest edge habitats and sub-alpine vegetation. Willow grouse are hunted throughout its range, and regionally it is a game bird of great cultural and economical importance.</p> <p>Results</p> <p>We sequenced 18 autosomal protein coding loci from approximately 15–18 individuals per population. We found a total of 127 SNP's, which corresponds to 1 SNP every 51 bp. 26 SNP's were amino acid replacement substitutions. Total nucleotide diversity (<it>π</it><sub><it>t</it></sub>) was between 1.30 × 10<sup>-4 </sup>and 7.66 × 10<sup>-3 </sup>(average <it>π</it><sub><it>t </it></sub>= 2.72 × 10<sup>-3 </sup>± 2.06 × 10<sup>-3</sup>) and silent nucleotide diversity varied between 4.20 × 10<sup>-4</sup>and 2.76 × 10<sup>-2 </sup>(average <it>π</it><sub><it>S </it></sub>= 9.22 × 10<sup>-3 </sup>± 7.43 × 10<sup>-4</sup>). The synonymous diversity is approximately 20 times higher than in humans and two times higher than in chicken. Non-synonymous diversity was on average 18 times lower than the synonymous diversity and varied between 0 and 4.90 × 10<sup>-3 </sup>(average <it>π</it><sub><it>a </it></sub>= 5.08 × 10<sup>-4 </sup>± 7.43 × 10<sup>3</sup>), which suggest that purifying selection is strong in these genes. <it>F</it><sub>ST </sub>values based on synonymous SNP's varied between -5.60 × 10<sup>-4 </sup>and 0.20 among loci and revealed low levels of differentiation among the four localities, with an overall value of <it>F</it><sub>ST </sub>= 0.03 (95% CI: 0.006 – 0.057) over 60 unlinked loci. Non-synonymous SNP's gave similar results. Low levels of linkage disequilibrium were observed within genes, with an average r<sup>2 </sup>= 0.084 ± 0.110, which is expected for a large outbred population with no population differentiation. The mean per site per generation recombination parameter (ρ) was comparably high (0.028 ± 0.018), indicating high recombination rates in these genes.</p> <p>Conclusion</p> <p>We found unusually high levels of nucleotide diversity in the Scandinavian willow grouse as well as very little population structure among localities with up to 1647 km distance. There are also low levels of linkage disequilibrium within the genes and the population recombination rate is high, which is indicative of an old panmictic population, where recombination has had time to break up any haplotype blocks. The non-synonymous nucleotide diversity is low compared with the silent, which is in agreement with effective purifying selection, possibly due to the large effective population size.</p

    Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells

    Get PDF
    INTRODUCTION: Gefitinib (Iressa, ZD 1839, AstraZeneca) blocks the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and inhibits proliferation of several human cancer cell types including breast cancer. Phase II clinical trials with gefitinib monotherapy showed an objective response of 9 to 19% in non-small-cell lung cancer patients and less than 10% for breast cancer, and phase III results have indicated no benefit of gefitinib in combination with chemotherapy over chemotherapy alone. In order to improve the antineoplastic activity of gefitinib, we investigated the effects of blocking the signalling of the insulin-like growth factor 1 receptor (IGF-1R), a tyrosine kinase with a crucial role in malignancy that is coexpressed with EGFR in most human primary breast carcinomas. METHODS: AG1024 (an inhibitor of IGF-1R) was used with gefitinib for treatment of MDA468, MDA231, SK-BR-3, and MCF-7 breast cancer lines, which express similar levels of IGF-1R but varying levels of EGFR. Proliferation assays, apoptosis induction studies, and Western blot analyses were conducted with cells treated with AG1024 and gefitinib as single agents and in combination. RESULTS: Gefitinib and AG1024 reduced proliferation in all lines when used as single agents, and when used in combination revealed an additive-to-synergistic effect on cell growth inhibition. Flow cytometry measurements of cells stained with annexin V-propidium iodide and cells stained for caspase-3 activation indicated that adding an IGF-1R-targeting strategy to gefitinib results in higher levels of apoptosis than are achieved with gefitinib alone. Gefitinib either reduced or completely inhibited p42/p44 Erk kinase phosphorylation, depending on the cell line, while Akt phosphorylation was reduced by a combination of the two agents. Overexpression of IGF-1R in SK-BR-3 cells was sufficient to cause a marked enhancement in gefitinib resistance. CONCLUSION: These results indicate that IGF-1R signaling reduces the antiproliferative effects of gefitinib in several breast cancer cell lines, and that the addition of an anti-IGF-1R strategy to gefitinib treatment may be more effective than a single-agent approach
    corecore