403 research outputs found
Molecular hydrogen isotopes adsorbed on krypton-preplated graphite: Quantum Monte Carlo simulations
Adsorption of ortho-deuterium and para-hydrogen films on a graphite
substrate, pre-plated with a single atomic layer of krypton, is studied
theoretically by means of quantum Monte Carlo simulations at low temperature.
Our model explicitly includes substrate corrugation. Energetic and structural
properties of these adsorbed films are computed for a range of hydrogen
coverages. Thermodynamically stable adsorbed films are solid, with no clear
evidence of any liquid-like phase. Quantum exchanges of ortho-deuterium and
para-hydrogen are essentially absent in this system, down to zero temperature;
consequently, this system displays no superfluidity in this limit. Our
simulations provide evidence of a stable domain wall fluid at low temperature,
consistently with recent experimental observations.Comment: 7 pages, 7 figure
Low temperature phase diagram of condensed para-Hydrogen in two dimensions
Extensive Path Integral Monte Carlo simulations of condensed para-Hydrogen in
two dimensions at low temperature have been carried out. In the zero
temperature limit, the system is a crystal at equilibrium, with a triangular
lattice structure. No metastable liquid phase is observed, as the system
remains a solid down to the spinodal density, and breaks down into solid
clusters at lower densities. The equilibrium crystal is found to melt at a
temperature close to 7 K
Melting of a p-H2 monolayer on a lithium substrate
Adsorption of para-hydrogen films on Alkali metals substrates at low
temperature is studied theoretically by means of Path Integral Monte Carlo
simulations. Realistic potentials are utilized to model the interaction between
two para-hydrogen molecules, as well as between a para-hydrogenmolecule and the
substrate, assumed smooth. Results show that adsorption of para-hydrogen on a
Lithium substrate, the most attractive among the Alkali, occurs through
completion of successive solid adlayers. Each layer has a two-dimensional
density approximatley equal 0.070 inverse square Angstroms. A solid
para-hydrogen monolayer displays a higher degree of confinement, in the
direction perpendicular to the substrate, than a monolayer Helium film, and has
a melting temperature of about 6.5 K. The other Alkali substrates are not
attractive enough to be wetted by molecular hydrogen at low temperature. No
evidence of a possible superfluid phase of para-hydrogen is seen in these
systems.Comment: Scales on the y-axis in Figs. 4,5 and 7 are off by a factor 2 in
published version; corrected her
Adsorption of para-Hydrogen on Krypton pre-plated graphite
Adsorption of para-Hydrogen on the surface of graphite pre-plated with a
single layer of atomic krypton is studied thoretically by means of Path
Integral Ground State Monte Carlo simulations. We compute energetics and
density profiles of para-hydrogen, and determine the structure of the adsorbed
film for various coverages. Results show that there are two thermodynamically
stable monolayer phases of para-hydrogen, both solid. One is commensurate with
the krypton layer, the other is incommensurate. No evidence is seen of a
thermodynamically stable liquid phase, at zero temperature. These results are
qualitatively similar to what is seen for for para-hydrogen on bare graphite.
Quantum exchanges of hydrogen molecules are suppressed in this system.Comment: 12 pages, 6 figures, to appear in the proceedings of "Advances in
Computational Many-Body Physics", Banff, Alberta (Canada), January 13-16 200
Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Chemical Reactions
Chemical reaction systems operating in nonequilibrium open-system states
arise in a great number of contexts, including the study of living organisms,
in which chemical reactions, in general, are far from equilibrium. Here we
introduce a theorem that relates forward and re-verse fluxes and free energy
for any chemical process operating in a steady state. This rela-tionship, which
is a generalization of equilibrium conditions to the case of a chemical process
occurring in a nonequilibrium steady state, provides a novel equivalent
definition for chemical reaction free energy. In addition, it is shown that
previously unrelated theories introduced by Ussing and Hodgkin and Huxley for
transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks
for entropy production in microscopically reversible systems, are united in a
common framework based on this relationship.Comment: 11 page
Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics
Standard formulae of classical electromagnetism for the forces between
electric charges in motion derived from retarded potentials are compared with
those obtained from a recently developed relativistic classical electrodynamic
theory with an instantaneous inter-charge force. Problems discussed include
small angle Rutherford scattering, Jackson's recent `torque paradox' and
circular Keplerian orbits. Results consistent with special relativity are
obtained only with an instantaneous interaction. The impossiblity of stable
circular motion with retarded fields in either classical electromagnetism or
Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded
electromagnetic forces. See also physics/0501130. V2 has typos corrected,
minor text modifications and updated references. V3 has further typos removed
and added text and reference
Conditioning bounds for traveltime tomography in layered media
This paper revisits the problem of recovering a smooth, isotropic, layered
wave speed profile from surface traveltime information. While it is classic
knowledge that the diving (refracted) rays classically determine the wave speed
in a weakly well-posed fashion via the Abel transform, we show in this paper
that traveltimes of reflected rays do not contain enough information to recover
the medium in a well-posed manner, regardless of the discretization. The
counterpart of the Abel transform in the case of reflected rays is a Fredholm
kernel of the first kind which is shown to have singular values that decay at
least root-exponentially. Kinematically equivalent media are characterized in
terms of a sequence of matching moments. This severe conditioning issue comes
on top of the well-known rearrangement ambiguity due to low velocity zones.
Numerical experiments in an ideal scenario show that a waveform-based model
inversion code fits data accurately while converging to the wrong wave speed
profile
The Genesis Solar Wind Concentrator Target: Mass Fractionation Characterised by Neon Isotopes
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome these disagreement
Action at a distance as a full-value solution of Maxwell equations: basis and application of separated potential's method
The inadequacy of Li\'{e}nard-Wiechert potentials is demonstrated as one of
the examples related to the inconsistency of the conventional classical
electrodynamics. The insufficiency of the Faraday-Maxwell concept to describe
the whole electromagnetic phenomena and the incompleteness of a set of
solutions of Maxwell equations are discussed and mathematically proved. Reasons
of the introduction of the so-called ``electrodynamics dualism concept"
(simultaneous coexistence of instantaneous Newton long-range and
Faraday-Maxwell short-range interactions) have been displayed. It is strictly
shown that the new concept presents itself as the direct consequence of the
complete set of Maxwell equations and makes it possible to consider classical
electrodynamics as a self-consistent and complete theory, devoid of inward
contradictions. In the framework of the new approach, all main concepts of
classical electrodynamics are reconsidered. In particular, a limited class of
motion is revealed when accelerated charges do not radiate electromagnetic
field.Comment: ReVTeX file, 24pp. Small corrections which do not have influence
results of the paper. Journal reference is adde
- …