10,097 research outputs found

    Limits on Lorentz violation in neutral-Kaon decay

    Get PDF
    The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon K_S with respect to the cosmic microwave background dipole anisotropy. We interpret their results in a general framework developed to probe Lorentz violation in the weak interaction. In this approach a Lorentz-violating tensor \chi_{\mu\nu} is added to the standard propagator of the W boson. We derive the K_S decay rate in a naive tree-level model and calculate the asymmetry for the lifetime. By using the KLOE data the real vector part of \chi_{\mu\nu} is found to be smaller than 10^-2. We briefly discuss the theoretical challenges concerning nonleptonic decays.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013

    Testing Lorentz invariance in orbital electron capture

    Get PDF
    Searches for Lorentz violation were recently extended to the weak sector, in particular neutron and nuclear β\beta decay [1]. From experiments on forbidden β\beta-decay transitions strong limits in the range of 10−610^{-6}-10−810^{-8} were obtained on Lorentz-violating components of the WW-boson propagator [2]. In order to improve on these limits strong sources have to be considered. In this Brief Report we study isotopes that undergo orbital electron capture and allow experiments at high decay rates and low dose. We derive the expressions for the Lorentz-violating differential decay rate and discuss the options for competitive experiments and their required precision.Comment: accepted for publication as a Brief Report in Physical Review

    Symmetry violations in nuclear and neutron β\beta decay

    Get PDF
    The role of β\beta decay as a low-energy probe of physics beyond the Standard Model is reviewed. Traditional searches for deviations from the Standard Model structure of the weak interaction in β\beta decay are discussed in the light of constraints from the LHC and the neutrino mass. Limits on the violation of time-reversal symmetry in β\beta decay are compared to the strong constraints from electric dipole moments. Novel searches for Lorentz symmetry breaking in the weak interaction in β\beta decay are also included, where we discuss the unique sensitivity of β\beta decay to test Lorentz invariance. We end with a roadmap for future β\beta-decay experiments.Comment: Accepted for publication in Rev. Mod. Phys. 86 pages, 13 figure

    Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    Get PDF
    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-like resonances with a strong dispersion, with potential applications in slow light, sensing and optical memory.Comment: 8 pages, 6 figure

    Exploration of Lorentz violation in neutral-kaon decay

    Get PDF
    The KLOE collaboration recently reported bounds on the directional dependence of the lifetime of the short-lived neutral kaon KS0K^0_S with respect to the dipole anisotropy of the cosmic microwave background. We interpret their results in an effective field theory framework developed to probe the violation of Lorentz invariance in the weak interaction and previously applied to semileptonic processes, in particular β\beta decay. In this approach a general Lorentz-violating tensor χμν\chi^{\mu\nu} is added to the standard propagator of the WW boson. We perform an exploratory study of the prospects to search for Lorentz violation in nonleptonic decays. For the kaon, we find that the sensitivity to Lorentz violation is limited by the velocity of the kaons and by the extent to which hadronic effects can be calculated. In a simple model we derive the KS0K^0_S decay rate and calculate the asymmetry for the lifetime. Using the KLOE data, limits on the values of χμν\chi^{\mu\nu} are determined.Comment: accepted for publication in Physics Letters

    Programmable two-photon quantum interference in 10310^3 channels in opaque scattering media

    Get PDF
    We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports 10610^6 transmission channels. By adaptive spatial phase-modulation of the incident wavefronts, the photons are directed at targeted speckle spots or output channels. From 10310^3 experimentally available coupled channels, we select two channels and enhance their transmission, to realize the equivalent of a fully programmable 2×22\times2 beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programmed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be non-unitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and physical-key-based authentication

    Mapping individual electromagnetic field components inside a photonic crystal

    Get PDF
    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.Comment: 12 pages, 7 figure

    Note on the monodromy conjecture for a space monomial curve with a plane semigroup

    Get PDF
    Roughly speaking, the monodromy conjecture for a singularity states that every pole of its motivic Igusa zeta function induces an eigenvalue of its monodromy. In this note, we determine both the motivic Igusa zeta function and the eigenvalues of monodromy for a space monomial curve that appears as the special fiber of an equisingular family whose generic fiber is a plane branch. In particular, this yields a proof of the monodromy conjecture for such a curve. En gros, la conjecture de la monodromie pour une singularité dit que chaque pôle de sa fonction zêta d’Igusa motivique induit une valeur propre de sa monodromie. Dans cette note, nous déterminons la fonction zêta d’Igusa motivique ainsi que les valeurs propres de la monodromie pour une courbe d’espace monomiale qui apparaît comme fibre spéciale d’une famille équisingulière dont la fibre générique est une branche plane. En particulier, il en résulte une démonstration de la conjecture de la monodromie pour une telle courb

    Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings

    Get PDF
    While nature has optimized its antifouling strategies over millions of years, synthetic antifouling coatings have not yet reached technological maturity. For an antifouling coating to become technically feasible, it should fulfill many requirements: high effectiveness, long-term stability, durability, ecofriendliness, large-scale applicability, and more. It is therefore not surprising that the search for the perfect antifouling coating has been going on for decades. With the discovery of metal-based antifouling paints in the 1970s, fouling was thought to be a problem of the past, yet its untargeted toxicity led to serious ecological concern, and its use became prohibited. As a response, research shifted focus toward a biocompatible alternative: polymer-based antifouling coatings. This has resulted in numerous advanced and innovative antifouling strategies, including fouling-resistant, fouling-release, and fouling-degrading coatings. Here, these novel and exciting discoveries are highlighted while simultaneously assessing their antifouling performance and practical feasibility
    • …
    corecore