1,661 research outputs found
A nonlinear perturbation theory for estimation and control of time discrete stochastic systems
Nonlinear perturbation theory for optimal estimation and control of time-discrete, stochastic, dynamic systems when measurement data is nois
Review of methods applicable to the assessment of mold exposure to children.
This article presents discussion of the assessment of the exposure of children to fungi, substances derived from fungi, and the environmental conditions that may lead to exposure. The principles driving investigations of fungal contamination and subsequent exposure are presented as well as guidelines for conducting these investigations. A comprehensive description of available research sampling and analysis techniques is also presented
Free Re-boost Electrodynamic Tether on the International Space Station
The International Space Station (ISS) currently experiences significant orbital drag that requires constant make up propulsion or the Station will quickly reenter the Earth's Atmosphere. The reboost propulsion is presently achieved through the firing of hydrazine rockets at the cost of considerable propellant mass. The problem will inevitably grow much worse as station components continue to be assembled, particularly when the full solar panel arrays are deployed. This paper discusses many long established themes on electrodynamic propulsion in the context of Exploration relevance, shows how to couple unique ISS electrical power system characteristics and suggests a way to tremendously impact ISS's sustainability. Besides allowing launch mass and volume presently reserved for reboost propellant to be reallocated for science experiments and other critically needed supplies, there are a series of technology hardware demonstrations steps that can be accomplished on ISS, which are helpful to NASA s Exploration mission. The suggested ElectroDynamic (ED) tether and flywheel approach is distinctive in its use of free energy currently unusable, yet presently available from the existing solar array panels on ISS. The ideas presented are intended to maximize the utility of Station and radically increase orbital safety
Interplay Between Time-Temperature-Transformation and the Liquid-Liquid Phase Transition in Water
We study the TIP5P water model proposed by Mahoney and Jorgensen, which is
closer to real water than previously-proposed classical pairwise additive
potentials. We simulate the model in a wide range of deeply supercooled states
and find (i) the existence of a non-monotonic ``nose-shaped'' temperature of
maximum density line and a non-reentrant spinodal, (ii) the presence of a low
temperature phase transition, (iii) the free evolution of bulk water to ice,
and (iv) the time-temperature-transformation curves at different densities.Comment: RevTeX4, 4 pages, 4 eps figure
Transmission Properties of the oscillating delta-function potential
We derive an exact expression for the transmission amplitude of a particle
moving through a harmonically driven delta-function potential by using the
method of continued-fractions within the framework of Floquet theory. We prove
that the transmission through this potential as a function of the incident
energy presents at most two real zeros, that its poles occur at energies
(), and that the
poles and zeros in the transmission amplitude come in pairs with the distance
between the zeros and the poles (and their residue) decreasing with increasing
energy of the incident particle. We also show the existence of non-resonant
"bands" in the transmission amplitude as a function of the strength of the
potential and the driving frequency.Comment: 21 pages, 12 figures, 1 tabl
Dynamical Structure Factor for the Alternating Heisenberg Chain: A Linked Cluster Calculation
We develop a linked cluster method to calculate the spectral weights of
many-particle excitations at zero temperature. The dynamical structure factor
is expressed as a sum of exclusive structure factors, each representing
contributions from a given set of excited states. A linked cluster technique to
obtain high order series expansions for these quantities is discussed. We apply
these methods to the alternating Heisenberg chain around the dimerized limit
(), where complete wavevector and frequency dependent spectral
weights for one and two-particle excitations (continuum and bound-states) are
obtained. For small to moderate values of the inter-dimer coupling parameter
, these lead to extremely accurate calculations of the dynamical
structure factors. We also examine the variation of the relative spectral
weights of one and two-particle states with bond alternation all the way up to
the limit of the uniform chain (). In agreement with Schmidt and
Uhrig, we find that the spectral weight is dominated by 2-triplet states even
at , which implies that a description in terms of triplet-pair
excitations remains a good quantitative description of the system even for the
uniform chain.Comment: 26 pages, 17 figure
Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis
- …