4,827 research outputs found

    Advanced Neuromonitoring and Imaging in Pediatric Traumatic Brain Injury

    Get PDF
    While the cornerstone of monitoring following severe pediatric traumatic brain injury is serial neurologic examinations, vital signs, and intracranial pressure monitoring, additional techniques may provide useful insight into early detection of evolving brain injury. This paper provides an overview of recent advances in neuromonitoring, neuroimaging, and biomarker analysis of pediatric patients following traumatic brain injury

    Endogenous circatidal rhythm in the Manila clam Ruditapes philippinarum (Bivalvia: Veneridae)

    Get PDF
    Manila clams, Ruditapes philippinarum, removed from their natural environment and maintained for 9 weeks in continuously immersed conditions exhibited a clear endogenous circatidal rhythm in oxygen consumption. The clams exhibited a semidiurnal rhythmicity in oxygen consumption after showing a diurnal pattern in the first few days (5 to 7 d) of the experiment. The results of the present study indicate that activity rhythms of clams are controlled not only by exogenous factors, but also by an endogenous circatidal periodicity

    Modulated structures in electroconvection in nematic liquid crystals

    Full text link
    Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of a weakly-damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field. The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal rolls which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director.We present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter range where the zig-zag instability is not relevant these solutions are stable attractors, as observed in experiments. We also present two-dimensionally modulated states with and without defects which result from the destabilization of the one-dimensionally modulated structures. Finally, for no (or very small) damping, and away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of defect chains (or bands of defects) separating homogeneous regions of oblique rolls with very small amplitude. These states may provide a model for a class of poorly understood stationary structures observed in various highly-conducting materials ("prechevrons" or "broad domains").Comment: 13 pages, 13 figure

    Fluid Annotation: A Human-Machine Collaboration Interface for Full Image Annotation

    Full text link
    We introduce Fluid Annotation, an intuitive human-machine collaboration interface for annotating the class label and outline of every object and background region in an image. Fluid annotation is based on three principles: (I) Strong Machine-Learning aid. We start from the output of a strong neural network model, which the annotator can edit by correcting the labels of existing regions, adding new regions to cover missing objects, and removing incorrect regions. The edit operations are also assisted by the model. (II) Full image annotation in a single pass. As opposed to performing a series of small annotation tasks in isolation, we propose a unified interface for full image annotation in a single pass. (III) Empower the annotator. We empower the annotator to choose what to annotate and in which order. This enables concentrating on what the machine does not already know, i.e. putting human effort only on the errors it made. This helps using the annotation budget effectively. Through extensive experiments on the COCO+Stuff dataset, we demonstrate that Fluid Annotation leads to accurate annotations very efficiently, taking three times less annotation time than the popular LabelMe interface.Comment: ACM MultiMedia 2018. Live demo is available at fluidann.appspot.co

    Assessing the Geomorphic Evolution and Hydrographic Changes Induced by Winter Storms along the Louisiana Coast

    Get PDF
    The influence that cold front passages have on Louisiana coastal environments, including land loss and land building processes, has been the primary topic of this multidisciplinary research. This research has combined meteorological, remote sensing, and coastal expertise from the University of Wisconsin (UW) and Louisiana State University (LSU). Analyzed data sets include remotely sensed radiometric data (AVHRR on NOAA-12,13,14, Multispectral Atmospheric Mapping Sensor (MAMS) and MODIS Airborne Simulator (MAS) on NASA ER-2), U.S. Army Corps of Engineers (USACE) water level data, water quality data from the Coastal Studies Institute (CSI) at LSU, USACE river discharge data, National Weather Service (NWS) and CSI wind in sitzi measurements, geomorphic measurements from aerial photography (NASA ER-2 and Learjet), and CSI ground based sediment burial pipes (for monitoring topographic change along the Louisiana coast) and sediment cores. The work reported here-in is a continuation of an initial investigation into coastal Louisiana landform modification by cold front systems. That initial effort demonstrated the importance of cold front winds in the Atchafalaya Bay sediment plume distribution (Moeller et al.), documented the sediment transport and deposition process of the western Louisiana coast (Huh et al.) and developed tools (e.g. water types identification, suspended solids estimation) from multispectral radiometric data for application to the current study. This study has extended that work, developing a Geomorphic Impact Index (GI(sup 2)) for relating atmospheric forcing to coastal response and new tools to measure water motion and sediment transport

    Electronic density of states derived from thermodynamic critical field curves for underdoped La-Sr-Cu-O

    Full text link
    Thermodynamic critical field curves have been measured for La2xSrxCuO4+δLa_{2-x}Sr_{x}CuO_{4+\delta} over the full range of carrier concentrations where superconductivity occurs in order to determine changes in the normal state density of states with carrier concentration. There is a substantial window in the HTH-T plane where the measurements are possible because the samples are both thermodynamically reversible and the temperature is low enough that vortex fluctuations are not important. In this window, the data fit Hao-Clem rather well, so this model is used to determine HcH_c and κc\kappa_c for each temperature and carrier concentration. Using N(0) and the ratio of the energy gap to transition temperature, Δ(0)/kBTc\Delta (0)/k_BT_c, as fitting parameters, the HcvsTH_c vs T curves give Δ(0)/kBTc2.0\Delta (0)/k_BT_c \sim 2.0 over the whole range of xx. Values of N(0) remain rather constant in the optimum-doped and overdoped regime, but drops quickly toward zero in the underdoped regime.

    Anisotropic photo-induced magnetism of a RbjCok[Fe(CN)6]lnH2ORb_j Co_k [Fe(CN)_6]_l \cdot n H_2 O thin film

    Full text link
    A magneto-optically active thin film of Rbj_{j}Cok_{k}[Fe(CN)6_{6}]l_{l} \cdotnnH2_{2}O has been prepared using a sequential assembly method. Upon irradiation with light and at 5 K, the net magnetization of the film increased when the surface of the film was oriented parallel to the external magnetic field of 0.1 T. However, when the surface of the film was perpendicular to the field, the net magnetization \emph{decreased} upon irradiation. The presence of dipolar fields and the low-dimensional nature of the system are used to describe the orientation dependence of the photo-induced magnetization. The ability to increase or decrease the photo-induced magnetization by changing the orientation of the system with respect to the field is a new phenomenon that may be useful in future device applications.Comment: 10 pages, 2 figures, 1 tabl

    Effects of 3D-printed polycaprolactone/��-tricalcium phosphate membranes on guided bone regeneration

    Get PDF
    This study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/��-tricalcium phosphate (PCL/��-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and preosteoblasts were seeded into the membranes and rates and patterns of proliferation were analyzed using a kit-8 assay and by scanning electron microscopy. Osteogenic differentiation was verified by alizarin red S and alkaline phosphatase (ALP) staining. An in vivo experiment was performed using an alveolar bone defect beagle model, in which defects in three dogs were covered with different membranes. CT and histological analyses at eight weeks after surgery revealed that 3D-printed PCL/��-TCP membranes were more effective than 3D-printed PCL, and substantially better than conventional collagen membranes in terms of biocompatibility and bone regeneration and, thus, at facilitating GBR. ? 2017 by the authors. Licensee MDPI, Basel, Switzerland.118Ysciescopu

    Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear dielectric electroconvection

    Full text link
    Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (\approx hydrodynamic modes) of the underlying physical system, much more than quasi one- and two-dimensional patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the patten dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for three-dimensional pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a two-dimensional one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given.Comment: 29 pages, 2 figure
    corecore