97 research outputs found

    Pd/Cr Gates for a MIS Type Hydrogen Sensor

    Get PDF
    Instead of the pure Pd gates in MIS type hydrogen sensor, Pd-Cr alloy gates with different composition and structure were used to improve the sensors performance. The use of Pd-Cr alloy not only extended the dynamic range from 100 ppm to 50,000 ppm of hydrogen, but also showed quick response. The dynamic range and sensitivity were related to the nature of metal outer surface and the metal/insulator interface respectively

    Brd2/4 and Myc regulate alternative cell lineage programmes during early osteoclast differentiation in vitro

    Get PDF
    Osteoclast (OC) development in response to nuclear factor kappa-Β ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis are not known. Here, we demonstrate that in response to RANKL, early OC development entails regulation of two alternative cell fate transcriptional programmes, OC vs macrophage, with repression of the latter following activation of the former. Both programmes are regulated in a non-redundant manner by increased chromatin binding of Brd2 at promoters and of Brd4 at enhancers/super-enhancers. Myc, the top RANKL-induced TF, regulates OC development in co-operation with Brd2/4 and Max and by establishing negative and positive regulatory loops with other lineage-affiliated TFs. These insights into the transcriptional regulation of osteoclastogenesis suggest the clinical potential of selective targeting of Brd2/4 to abrogate pathological OC activation

    Performance of a MIS Type Pd-Cr/AlN/Si Hydrogen Sensor

    Get PDF
    An MIS Hydrogen sensor with a Pd0.96Cr0.04/AlN/Si structure was fabricated, exhibiting the dynamic range considerably wider than that of analogous devices with pure Pd gates. A useful response could be obtained for Hydrogen concentrations as large as 50,000 ppm. Although the response amplitude was much reduced at the lower concentrations, satisfactory signal to noise down to 50 ppm could be obtained. The saturating magnitude of the electrical response is in the range of 0.1 to 0.5 V, which is the same as that for the pure Pd gated devices, inspite of the 3 orders of magnitude difference in the saturation hydrogen concentration. This result will be discussed in terms of the response mechanism of these devices

    Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells.

    Get PDF
    Inhibition of the proteasome is a widely used strategy for treating multiple myeloma that takes advantage of the heavy secretory load that multiple myeloma cells (MMCs) have to deal with. Resistance of MMCs to proteasome inhibition has been linked to incomplete disruption of proteasomal endoplasmic-reticulum (ER)-associated degradation (ERAD) and activation of non-proteasomal protein degradation pathways. The ATPase p97 (VCP/Cdc48) has key roles in mediating both ERAD and non-proteasomal protein degradation and can be targeted pharmacologically by small molecule inhibition. In this study, we compared the effects of p97 inhibition with Eeyarestatin 1 and DBeQ on the secretory apparatus of MMCs with the effects induced by the proteasome inhibitor bortezomib, and the effects caused by combined inhibition of p97 and the proteasome. We found that p97 inhibition elicits cellular responses that are different from those induced by proteasome inhibition, and that the responses differ considerably between MMC lines. Moreover, we found that dual inhibition of both p97 and the proteasome terminally disrupts ER configuration and intracellular protein metabolism in MMCs. Dual inhibition of p97 and the proteasome induced high levels of apoptosis in all of the MMC lines that we analysed, including bortezomib-adapted AMO-1 cells, and was also effective in killing primary MMCs. Only minor toxicity was observed in untransformed and non-secretory cells. Our observations highlight non-redundant roles of p97 and the proteasome in maintaining secretory homeostasis in MMCs and provide a preclinical conceptual framework for dual targeting of p97 and the proteasome as a potential new therapeutic strategy in multiple myeloma

    The innate sensor ZBP1-IRF3 axis regulates cell proliferation in multiple myeloma

    Get PDF
    Multiple myeloma is a malignancy of plasma cells (PC) initiated and driven by primary and secondary genetic events. Nevertheless, myeloma PC survival and proliferation might be sustained by non-genetic drivers. Z-DNA-binding protein 1 (ZBP1; also known as DAI) is an interferon-inducible, Z-nucleic acid sensor that triggers RIPK3-MLKL-mediated necroptosis in mice. ZBP1 also interacts with TBK1 and the transcription factor IRF3 but the function of this interaction is unclear, and the role of ZBP1-IRF3 axis in cancer is not known. Here we show that ZBP1 is selectively expressed in late B cell development in both human and mouse cells and it is required for optimal T-cell-dependent humoral immune responses. In myeloma PC, interaction of constitutively expressed ZBP1 with TBK1 and IRF3 results in IRF3 phosphorylation. IRF3 directly binds and activates cell cycle genes, in part through co-operation with the PC lineage-defining transcription factor IRF4, and thereby promoting myeloma cell proliferation. This generates a novel, potentially therapeutically targetable and relatively selective myeloma cell addiction to the ZBP1-IRF3 axis. Our data also show a non-canonical function of constitutive ZBP1 in human cells and expand our knowledge of the role of cellular immune sensors in cancer biology

    Effect of prior treatments on selinexor, bortezomib, and dexamethasone in previously treated multiple myeloma

    Get PDF
    Therapeutic regimens for previously treated multiple myeloma (MM) may not provide prolonged disease control and are often complicated by significant adverse events, including peripheral neuropathy. In patients with previously treated MM in the Phase 3 BOSTON study, once weekly selinexor, once weekly bortezomib, and 40 mg dexamethasone (XVd) demonstrated a significantly longer median progression-free survival (PFS), higher response rates, deeper responses, a trend to improved survival, and reduced incidence and severity of bortezomib-induced peripheral neuropathy when compared with standard twice weekly bortezomib and 80 mg dexamethasone (Vd). The pre-specified analyses described here evaluated the influence of the number of prior lines of therapy, prior treatment with lenalidomide, prior proteasome inhibitor (PI) therapy, prior immunomodulatory drug therapy, and prior autologous stem cell transplant (ASCT) on the efficacy and safety of XVd compared with Vd. In this 1:1 randomized study, enrolled patients were assigned to receive once weekly oral selinexor (100 mg) with once weekly subcutaneous bortezomib (1.3 mg/m2) and 40 mg per week dexamethasone (XVd) versus standard twice weekly bortezomib and 80 mg per week dexamethasone (Vd). XVd significantly improved PFS, overall response rate, time-to-next-treatment, and showed reduced all grade and grade ≥ 2 peripheral neuropathy compared with Vd regardless of prior treatments, but the benefits of XVd over Vd were more pronounced in patients treated earlier in their disease course who had either received only one prior therapy, had never been treated with a PI, or had prior ASCT. Treatment with XVd improved outcomes as compared to Vd regardless of prior therapies as well as manageable and generally reversible adverse events. XVd was associated with clinical benefit and reduced peripheral neuropathy compared to standard Vd in previously treated MM. These results suggest that the once weekly XVd regimen may be optimally administered to patients earlier in their course of disease, as their first bortezomib-containing regimen, and in those relapsing after ASCT. Trial registration: ClinicalTrials.gov (NCT03110562). Registered 12 April 2017. https://clinicaltrials.gov/ct2/show/NCT03110562

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore