125 research outputs found

    Association and linkage studies between bipolar affective disorder and the polymorphic CAG/CTG repeat loci ERDA1, SEF2-1B, MAB21L and KCNN3

    Get PDF
    Several reports have suggested the presence of anticipation in bipolar affective disorder (BPAD). in addition, independent studies using the RED (repeat expansion detection) have shown association between BPAD and longer CAG/CTG repeats. Therefore loci with large CAG/CTG repeats are plausible candidates in the inheritance of BPAD. the present study assesses the length of the repeats in four loci: the ERDA-1 locus which is known to account for most of the long CAG repeats detected by RED, the SEF2-1b locus which is placed in a region where positive linkage results have been reported and the loci MAB21L and KCNN3 as functional candidate genes. A Brazilian case-control sample with 115 unrelated BPAD patients and 196 healthy control subjects and 14 multiply affected bipolar families was investigated. With the case-control design the distribution of alleles between the two groups did not approach statistical significance. the extended transmission disequilibrium test (ETDT) performed in our families did not show evidence for linkage disequilibrium. Parametric and non-parametric linkage analysis also did not provide support for linkage between any of the four loci and BPAD. Our data do not support the hypothesis that variation at the polymorphic CAG/CTG repeat loci ERDA-1, SEF2-1b, MAB21L or KCNN3 influence susceptibility to BPAD in our sample.Univ São Paulo, Sch Med, Inst Psychiat, Neurosci Lab LIM 27, BR-05403010 São Paulo, BrazilUniv São Paulo, Sch Med, Heart Inst InCor, Dept Med,Lab Genet & Mol Cardiol LIM 13, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Psychiat, São Paulo, BrazilInst Psychiat, Div Psychol Med, Sect Genet Epidemiol & Biostat, London, EnglandUniversidade Federal de São Paulo, Dept Psychiat, São Paulo, BrazilWeb of Scienc

    Flow shop rescheduling under different types of disruption

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 2013, available online:http://www.tandfonline.com/10.1080/00207543.2012.666856Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimise the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand, and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.The authors would like to thank the anonymous referees for their careful and detailed comments that helped to improve the paper considerably. This work is partially financed by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R + D program "Ayudas dirigidas a Institutos tecnologicos de la Red IMPIVA" during the year 2011, with project number IMDEEA/2011/142.Katragjini Prifti, K.; Vallada Regalado, E.; Ruiz García, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research. 51(3):780-797. https://doi.org/10.1080/00207543.2012.666856S780797513Abumaizar, R. J., & Svestka, J. A. (1997). Rescheduling job shops under random disruptions. International Journal of Production Research, 35(7), 2065-2082. doi:10.1080/002075497195074Adiri, I., Frostig, E., & Kan, A. H. G. R. (1991). Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs. Naval Research Logistics, 38(2), 261-271. doi:10.1002/1520-6750(199104)38:23.0.co;2-iAkturk, M. S., & Gorgulu, E. (1999). Match-up scheduling under a machine breakdown. European Journal of Operational Research, 112(1), 81-97. doi:10.1016/s0377-2217(97)00396-2Allahverdi, A. (1996). Two-machine proportionate flowshop scheduling with breakdowns to minimize maximum lateness. Computers & Operations Research, 23(10), 909-916. doi:10.1016/0305-0548(96)00012-3Arnaout, J. P., & Rabadi, G. (2008). Rescheduling of unrelated parallel machines under machine breakdowns. International Journal of Applied Management Science, 1(1), 75. doi:10.1504/ijams.2008.020040Artigues, C., Billaut, J.-C., & Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165(2), 314-328. doi:10.1016/j.ejor.2004.04.004Azizoglu, M., & Alagöz, O. (2005). Parallel-machine rescheduling with machine disruptions. IIE Transactions, 37(12), 1113-1118. doi:10.1080/07408170500288133Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup Scheduling with Multiple Resources, Release Dates and Disruptions. Operations Research, 39(3), 470-483. doi:10.1287/opre.39.3.470Caricato, P., & Grieco, A. (2008). An online approach to dynamic rescheduling for production planning applications. International Journal of Production Research, 46(16), 4597-4617. doi:10.1080/00207540601136225CHURCH, L. K., & UZSOY, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153-163. doi:10.1080/09511929208944524Cowling, P., & Johansson, M. (2002). Using real time information for effective dynamic scheduling. European Journal of Operational Research, 139(2), 230-244. doi:10.1016/s0377-2217(01)00355-1Curry, J., & Peters *, B. (2005). Rescheduling parallel machines with stepwise increasing tardiness and machine assignment stability objectives. International Journal of Production Research, 43(15), 3231-3246. doi:10.1080/00207540500103953DUTTA, A. (1990). Reacting to Scheduling Exceptions in FMS Environments. IIE Transactions, 22(4), 300-314. doi:10.1080/07408179008964185Ghezail, F., Pierreval, H., & Hajri-Gabouj, S. (2010). Analysis of robustness in proactive scheduling: A graphical approach. Computers & Industrial Engineering, 58(2), 193-198. doi:10.1016/j.cie.2009.03.004Goren, S., & Sabuncuoglu, I. (2008). Robustness and stability measures for scheduling: single-machine environment. IIE Transactions, 40(1), 66-83. doi:10.1080/07408170701283198Hall, N. G., & Potts, C. N. (2004). Rescheduling for New Orders. Operations Research, 52(3), 440-453. doi:10.1287/opre.1030.0101Herrmann, J. W., Lee, C.-Y., & Snowdon, J. L. (1993). A Classification of Static Scheduling Problems. Complexity in Numerical Optimization, 203-253. doi:10.1142/9789814354363_0011Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002Hozak, K., & Hill, J. A. (2009). Issues and opportunities regarding replanning and rescheduling frequencies. International Journal of Production Research, 47(18), 4955-4970. doi:10.1080/00207540802047106Huaccho Huatuco, L., Efstathiou, J., Calinescu, A., Sivadasan, S., & Kariuki, S. (2009). Comparing the impact of different rescheduling strategies on the entropic-related complexity of manufacturing systems. International Journal of Production Research, 47(15), 4305-4325. doi:10.1080/00207540701871036Jensen, M. T. (2003). Generating robust and flexible job shop schedules using genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(3), 275-288. doi:10.1109/tevc.2003.810067King, J. R. (1976). The theory-practice gap in job-shop scheduling. Production Engineer, 55(3), 137. doi:10.1049/tpe.1976.0044Kopanos, G. M., Capón-García, E., Espuña,, A., & Puigjaner, L. (2008). Costs for Rescheduling Actions: A Critical Issue for Reducing the Gap between Scheduling Theory and Practice. Industrial & Engineering Chemistry Research, 47(22), 8785-8795. doi:10.1021/ie8005676Lee, C.-Y., Leung, J. Y.-T., & Yu, G. (2006). Two Machine Scheduling under Disruptions with Transportation Considerations. Journal of Scheduling, 9(1), 35-48. doi:10.1007/s10951-006-5592-7Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4-5), 715-727. doi:10.1016/j.compchemeng.2007.03.001Liao, C. J., & Chen, W. J. (2004). Scheduling under machine breakdown in a continuous process industry. Computers & Operations Research, 31(3), 415-428. doi:10.1016/s0305-0548(02)00224-1Mehta, S. V. (1999). Predictable scheduling of a single machine subject to breakdowns. International Journal of Computer Integrated Manufacturing, 12(1), 15-38. doi:10.1080/095119299130443MUHLEMANN, A. P., LOCKETT, A. G., & FARN, C.-K. (1982). Job shop scheduling heuristics and frequency of scheduling. International Journal of Production Research, 20(2), 227-241. doi:10.1080/00207548208947763Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9O’Donovan, R., Uzsoy, R., & McKay, K. N. (1999). Predictable scheduling of a single machine with breakdowns and sensitive jobs. International Journal of Production Research, 37(18), 4217-4233. doi:10.1080/002075499189745Özlen, M., & Azizoğlu, M. (2009). Generating all efficient solutions of a rescheduling problem on unrelated parallel machines. International Journal of Production Research, 47(19), 5245-5270. doi:10.1080/00207540802043998Pfeiffer, A., Kádár, B., & Monostori, L. (2007). Stability-oriented evaluation of rescheduling strategies, by using simulation. Computers in Industry, 58(7), 630-643. doi:10.1016/j.compind.2007.05.009Pierreval, H., & Durieux-Paris, S. (2007). Robust simulation with a base environmental scenario. European Journal of Operational Research, 182(2), 783-793. doi:10.1016/j.ejor.2006.07.045Damodaran, P., Hirani, N. S., & Gallego, M. C. V. (2009). Scheduling identical parallel batch processing machines to minimise makespan using genetic algorithms. European J. of Industrial Engineering, 3(2), 187. doi:10.1504/ejie.2009.023605Qi, X., Bard, J. F., & Yu, G. (2006). Disruption management for machine scheduling: The case of SPT schedules. International Journal of Production Economics, 103(1), 166-184. doi:10.1016/j.ijpe.2005.05.021Rangsaritratsamee, R., Ferrell, W. G., & Kurz, M. B. (2004). Dynamic rescheduling that simultaneously considers efficiency and stability. Computers & Industrial Engineering, 46(1), 1-15. doi:10.1016/j.cie.2003.09.007Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Sabuncuoglu, I., & Goren, S. (2009). Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, 22(2), 138-157. doi:10.1080/09511920802209033Sabuncuoglu, I., & Kizilisik, O. B. (2003). Reactive scheduling in a dynamic and stochastic FMS environment. International Journal of Production Research, 41(17), 4211-4231. doi:10.1080/0020754031000149202Salveson, M. E. (1952). On a Quantitative Method in Production Planning and Scheduling. Econometrica, 20(4), 554. doi:10.2307/1907643Samarghandi, H., & ElMekkawy, T. Y. (2011). An efficient hybrid algorithm for the two-machine no-wait flow shop problem with separable setup times and single server. European J. of Industrial Engineering, 5(2), 111. doi:10.1504/ejie.2011.039869Subramaniam *, V., Raheja, A. S., & Rama Bhupal Reddy, K. (2005). Reactive repair tool for job shop schedules. International Journal of Production Research, 43(1), 1-23. doi:10.1080/0020754042000270412Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research, 47(1), 65-74. doi:10.1016/0377-2217(90)90090-xTaillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285. doi:10.1016/0377-2217(93)90182-mValente, J. M. S., & Schaller, J. E. (2010). Improved heuristics for the single machine scheduling problem with linear early and quadratic tardy penalties. European J. of Industrial Engineering, 4(1), 99. doi:10.1504/ejie.2010.029572Vallada, E., & Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem☆. Omega, 38(1-2), 57-67. doi:10.1016/j.omega.2009.04.002Vieira, G. E., Herrmann, J. W., & Lin, E. (2000). Predicting the performance of rescheduling strategies for parallel machine systems. Journal of Manufacturing Systems, 19(4), 256-266. doi:10.1016/s0278-6125(01)80005-4Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Journal of Scheduling, 6(1), 39-62. doi:10.1023/a:1022235519958Yang, J., & Yu, G. (2002). Journal of Combinatorial Optimization, 6(1), 17-33. doi:10.1023/a:1013333232691Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999-7027. doi:10.1080/0020754080240063

    Heritability of semantic verbal fluency task using time-interval analysis

    Get PDF
    Individual variability in word generation is a product of genetic and environmental influences. The genetic effects on semantic verbal fluency were estimated in 1,735 participants from the Brazilian Baependi Heart Study. The numbers of exemplars produced in 60 s were broken down into time quartiles because of the involvement of different cognitive processes—predominantly automatic at the beginning, controlled/executive at the end. Heritability in the unadjusted model for the 60-s measure was 0.32. The best-fit model contained age, sex, years of schooling, and time of day as covariates, giving a heritability of 0.21. Schooling had the highest moderating effect. The highest heritability (0.17) was observed in the first quartile, decreasing to 0.09, 0.12, and 0.0003 in the following ones. Heritability for average production starting point (intercept) was 0.18, indicating genetic influences for automatic cognitive processes. Production decay (slope), indicative of controlled processes, was not significant. The genetic influence on different quartiles of the semantic verbal fluency test could potentially be exploited in clinical practice and genome-wide association studies

    Evening preference correlates with regional brain volumes in the anterior occipital lobe

    Get PDF
    Chronotype or diurnal preference is a questionnaire-based measure influenced both by circadian period and by the sleep homeostat. In order to further characterize the biological determinants of these measures, we used a hypothesis-free approach to investigate the association between the score of the morningness-eveningness questionnaire (MEQ) and the Munich chronotype questionnaire (MCTQ), as continuous variables, and volumetric measures of brain regions acquired by magnetic resonance imaging (MRI). Data were collected from the Baependi Heart Study cohort, based in a rural town in South-Eastern Brazil. MEQ and anatomical 1.5-T MRI scan data were available from 410 individuals, and MCTQ scores were available from a subset of 198 of them. The average MEQ (62.2 ± 10.6) and MCTQ (average MSFsc 201 ± 85 min) scores were suggestive of a previously reported strong general tendency toward morningness in this community. Setting the significance threshold at P > .002 to account for multiple comparisons, we observed a significant association between lower MEQ score (eveningness) and greater volume of the left anterior occipital sulcus (β = −0.163, p = .001) of the occipital lobe. No significant associations were observed for MCTQ. This may reflect the smaller dataset for MCTQ, and/or the fact that MEQ, which asks questions about preferred timings, is more trait-like than the MCTQ, which asks questions about actual timings. The association between MEQ and a brain region dedicated to visual information processing is suggestive of the increasingly recognized fluidity in the interaction between visual and nonvisual photoreception and the circadian system, and the possibility that chronotype includes an element of masking

    Evolutionism and genetics of posttraumatic stress disorder

    Get PDF
    The authors discuss, from the evolutionary concept, how flight and fight responses and tonic immobility can lead to a new understanding of posttraumatic stress disorder. Through the analysis of symptom clusters (revivals, avoidance and hyperexcitation), neurobiological and evolutionary findings are correlated. The current discoveries on posttraumatic stress disorder genetics are summarized and analyzed in this evolutionary perspective, using concepts to understand the gene-environment interaction, such as epigenetic. The proposal is that the research of susceptibility factors in posttraumatic stress disorder must be investigated from the factorial point of view, where their interactions increase the risk of developing the disorder, preventing a unique search of the cause of this disorder. The research of candidate genes in posttraumatic stress disorder must take into consideration all the systems associated with processes of stress response, such as the hypothalamus-pituitary-adrenal and sympathetic axes, mechanisms of learning, formation and extinguishing of declarative memories, neurogenesis and apoptosis, which involve many systems of neurotransmitters, neuropeptides and neurohormones.Os autores discutem, a partir do conceito evolutivo, como a resposta de estresse, nas suas possibilidades de fuga e luta e de imobilidade tônica, pode levar a uma nova compreensão etiológica do transtorno de estresse pós-traumático. Através da análise dos agrupamentos de sintomas desse diagnóstico - revivência, evitação e hiperexcitação -, procuram correlacionar os achados neurobiológicos e evolutivos. As descobertas atuais sobre a genética do transtorno de estresse pós-traumático são resumidas e colocadas nessa perspectiva evolutiva, dentro de conceitos que possibilitam o entendimento da interação gene/ambiente, como a epigenética. Propõem que a pesquisa dos fatores de risco do transtorno de estresse pós-traumático deva ser investigada do ponto de vista fatorial, onde a somatória destes aumenta o risco de desenvolvimento do quadro, não sendo possível a procura da causa do transtorno de forma única. A pesquisa de genes candidatos no transtorno de estresse pós-traumático deve levar em consideração todos os sistemas associados aos processos de respostas ao estresse, sistemas dos eixos hipotálamo-hipofisário-adrenal e simpático, mecanismos de aprendizado, formação de memórias declarativas, de extinção e esquecimento, da neurogênese e da apoptose, que envolvem vários sistemas de neurotransmissores, neuropeptídeos e neuro-hormônios.Universidade Federal de São Paulo (UNIFESP)(UNIFESP)UNIFESP Departamento de PsiquiatriaUniversidade de São Paulo Faculdade de Medicin Hospital de ClínicasUNIFESP, Depto. de PsiquiatriaSciEL

    The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    Get PDF
    BACKGROUND: A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. PRESENTATION OF THE HYPOTHESIS: Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. TESTING THE HYPOTHESIS: Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. IMPLICATIONS OF THE HYPOTHESIS: The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments
    corecore