6 research outputs found

    Índice de humidificação obtido através da fluorescência induzida por lazer.

    Get PDF
    bitstream/CNPDIA/10445/1/BPD07_2004.pd

    Spin polarization of carriers in InGaAs self-assembled quantum rings inserted in GaAs-AlGaAs resonant tunneling devices

    Get PDF
    In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs’ PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs

    Voltage- and light-controlled spin properties of a two-dimensional hole gas in p-type GaAs/AlAs resonant tunneling diodes

    Get PDF
    We have investigated the spin properties of a two-dimensional hole gas (2DHG) formed at the contact layer of a p-type GaAs/AlAs resonant tunneling diode (RTD). We have measured the polarized-resolved photoluminescence of the RTD as a function of bias voltage, laser intensity and external magnetic field up to 15T. By tuning the voltage and the laser intensity, we are able to change the spin-splitting from the 2DHG from almost 0 meV to 5 meV and its polarization degree from − 40% to + 50% at 15T. These results are attributed to changes of the local electric field applied to the two-dimensional gas which affects the valence band and the hole Rashba spin–orbit effect

    Voltage controlled electron spin dynamics in resonant tunnelling devices

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOWe investigate the electron spin dynamics in a p-type GaAs/AlAs resonant tunnelling device by measuring the time-and polarized-resolved photoluminescence (PL) from the GaAs quantum well under a high magnetic field (15 T). The voltage dependence of the PL transients have revealed various tunnelling processes with different time constants that give rise to distinct spin-polarized carriers injected into the double-barrier structure.471616FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP [12/24055-6, 11/20985-6]Sem informaçãoSem informaçãoSem informaçãoAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Spin polarization of carriers in resonant tunneling devices containing InAs self-assembled quantum dots

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOIn this work, we have investigated transport and optical properties of n-i-n resonant tunneling diodes (RTDs) containing a layer of InAs self-assembled quantum dots (QDs) grown on a (311)B oriented GaAs substrate. Polarization-resolved photoluminescence (PL) and magneto-transport measurements were performed under applied voltage and magnetic fields up to 15 T at 2 K under linearly polarized laser excitation. It was observed that the QD circular polarization degree depends strongly on the applied voltage. Its voltage dependence is explained by the formation of excitonic complexes such as positively (X+) and negatively (X-) charged excitons in the QDs. Our results demonstrate an effective electrical control of an ensemble of InAs QD properties by tuning the applied voltage across a RID device into the resonant tunneling condition. (C) 2015 Elsevier Ltd. All rights reserved.In this work, we have investigated transport and optical properties of n-i-n resonant tunneling diodes (RTDs) containing a layer of InAs self-assembled quantum dots (QDs) grown on a (311)B oriented GaAs substrate. Polarization-resolved photoluminescence (PL) and magneto-transport measurements were performed under applied voltage and magnetic fields up to 15 T at 2 K under linearly polarized laser excitation. It was observed that the QD circular polarization degree depends strongly on the applied voltage. Its voltage dependence is explained by the formation of excitonic complexes such as positively (X+) and negatively (X-) charged excitons in the QDs. Our results demonstrate an effective electrical control of an ensemble of InAs QD properties by tuning the applied voltage across a RID device into the resonant tunneling condition.88574581FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP [2012/24055-6]2012/24055-6Sem informaçãoSem informaçãoThe authors acknowledge the financial supports from the Brazilian Agencies (grants FAPESP 2012/24055-6, CAPES and CNPq) and the UK Engineering and Physical Sciences Research Council. Part of this work has been supported by EuroMagNET II under the EU contract number 228043
    corecore