646 research outputs found

    A Short Guide to Debris Disk Spectroscopy

    Full text link
    Multi-wavelength spectroscopy can be used to constrain the dust and gas properties in debris disks. Circumstellar dust absorbs and scatters incident stellar light. The scattered light is sometimes resolved spatially at visual and near-infrared wavelengths using high contrast imaging techniques that suppress light from the central star. The thermal emission is inferred from infrared through submillimeter excess emission that may be 1-2 orders of magnitude brighter than the stellar photosphere alone. If the disk is not spatially resolved, then the radial distribution of the dust can be inferred from Spectral Energy Distribution (SED) modeling. If the grains are sufficiently small and warm, then their composition can be determined from mid-infrared spectroscopy. Otherwise, their composition may be determined from reflectance and/or far-infrared spectroscopy. Atomic and molecular gas absorb and resonantly scatter stellar light. Since the gas is believed to be secondary, detailed analysis analysis of the gas distribution, kinematics, and composition may also shed light on the dust composition and processing history.Comment: 6 pages, 2nd Subaru International Conference on Exoplanets and Disks: Their Formation and Diversity, Keauhou - Hawaii, 9-12 March 200

    Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy

    Full text link
    Observationally, supernovae (SNe) are divided into subclasses pertaining to their distinct characteristics. This diversity reflects the diversity in the progenitor stars. It is not entirely clear how different evolutionary paths leading massive stars to become a SN are governed by fundamental parameters such as progenitor initial mass and metallicity. This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses, through a study of the parent stellar populations at the explosion sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN Ic, followed by type Ib, then types IIb and II. SN IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimate lower than 25~MM_\odot are found; these are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channel only, and both single and binary channels are at play in the production of core-collapse SNe. [ABRIDGED]Comment: 18 pages, 10 figures, accepted to A&

    Distinguishing between optical coherent states with imperfect detection

    Full text link
    Several proposed techniques for distinguishing between optical coherent states are analyzed under a physically realistic model of photodetection. Quantum error probabilities are derived for the Kennedy receiver, the Dolinar receiver and the unitary rotation scheme proposed by Sasaki and Hirota for sub-unity detector efficiency. Monte carlo simulations are performed to assess the effects of detector dark counts, dead time, signal processing bandwidth and phase noise in the communication channel. The feedback strategy employed by the Dolinar receiver is found to achieve the Helstrom bound for sub-unity detection efficiency and to provide robustness to these other detector imperfections making it more attractive for laboratory implementation than previously believed

    High-Resolution Infrared Imaging of Herschel 36 SE: A Showcase for the Influence of Massive Stars in Cluster Environments

    Get PDF
    We present high-resolution infrared imaging of the massive star-forming region around the O-star Herschel 36. Special emphasis is given to a compact infrared source at 0".25 southeast of the star. The infrared source, hereafter Her 36 SE, is extended in the broad-band images, but features spatially unresolved Br gamma line emission. The line-emission source coincides in position with the previous HST detections in H alpha and the 2 cm radio continuum emission detected by VLA interferometry. We propose that the infrared source Her 36 SE harbors an early B-type star, deeply embedded in a dusty cloud. The fan shape of the cloud with Herschel 36 at its apex, though, manifests direct and ongoing destructive influence of the O7V star on Her 36 SE

    Kinematics of Ionized Gas at 0.01 AU of TW Hya

    Full text link
    We report two-dimensional spectroastrometry of Br gamma emission of TW Hya to study the kinematics of the ionized gas in the star-disk interface region. The spectroastrometry with the integral field spectrograph SINFONI at the Very Large Telescope is sensitive to the positional offset of the line emission down to the physical scale of the stellar diameter (~0.01 AU). The centroid of Br gamma emission is displaced to the north with respect to the central star at the blue side of the emission line, and to the south at the red side. The major axis of the centroid motion is P.A.= -20 degrees, which is nearly equal to the major axis of the protoplanetary disk projected on the sky, previously reported by CO sub millimeter spectroscopy (P.A.= -27 degrees) The line-of-sight motion of the Br gamma emission, in which the northern side of the disk is approaching toward us, is also consistent with the direction of the disk rotation known from the CO observation. The agreement implies that the kinematics of Br gamma emission is accounted for by the ionized gas in the inner edge of the disk. A simple modeling of the astrometry, however, indicates that the accretion inflow similarly well reproduces the centroid displacements of Br gamma, but only if the position angles of the centroid motion and the projected disk ellipse is a chance coincidence. No clear evidence of disk wind is found.Comment: A few corrections in the text and a figur

    A new quadruple gravitational lens from the Hyper Suprime-Cam Survey: the puzzle of HSC~J115252+004733

    Full text link
    We report the serendipitous discovery of a quadruply lensed source at zs=3.76z_{\rm s}=3.76, HSC~J115252+004733, from the Hyper Suprime-Cam (HSC) Survey. The source is lensed by an early-type galaxy at zl=0.466z_{\rm l}=0.466 and a satellite galaxy. Here, we investigate the properties of the source by studying its size and luminosity from the imaging and the luminosity and velocity width of the Ly-α\alpha line from the spectrum. Our analyses suggest that the source is most probably a low-luminosity active galactic nucleus (LLAGN) but the possibility of it being a compact bright galaxy (e.g., a Lyman-α\alpha emitter or Lyman Break Galaxy) cannot be excluded. The brighter pair of lensed images appears point-like except in the HSC ii-band (with a seeing 0.5"\sim0.5"). The extended emission in the ii-band image could be due to the host galaxy underneath the AGN, or alternatively, due to a highly compact lensed galaxy (without AGN) which appears point-like in all bands except in ii-band. We also find that the flux ratio of the brighter pair of images is different in the Ks-band compared to optical wavelengths. Phenomena such as differential extinction and intrinsic variability cannot explain this chromatic variation. While microlensing from stars in the foreground galaxy is less likely to be the cause, it cannot be ruled out completely. If the galaxy hosts an AGN, then this represents the highest redshift quadruply imaged AGN known to date, enabling study of a distant LLAGN. Discovery of this unusually compact and faint source demonstrates the potential of the HSC survey.Comment: 9 pages, 7 figures, 3 Tables, MNRAS accepted, text reduce

    Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?

    Full text link
    We report the discovery of a diffuse stellar cloud with an angular extent 30\gtrsim30^{\prime\prime}, which we term "Sumo Puff", in data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). While we do not have a redshift for this object, it is in close angular proximity to a post-merger galaxy at redshift z=0.0431z=0.0431 and is projected within a few virial radii (assuming similar redshifts) of two other L{\sim}L_\star galaxies, which we use to bracket a potential redshift range of 0.0055<z<0.04310.0055 < z < 0.0431. The object's light distribution is flat, as characterized by a low Sersic index (n0.3n\sim0.3). It has a low central gg-band surface brightness of 26.4{\sim}26.4 mag arcsec2^{-2}, large effective radius of 13{\sim}13^{\prime\prime} (11{\sim}11 kpc at z=0.0431z=0.0431 and 1.5{\sim}1.5 kpc at z=0.0055z=0.0055), and an elongated morphology (b/a0.4b/a\sim0.4). Its red color (gi1g-i\sim1) is consistent with a passively evolving stellar population and similar to the nearby post-merger galaxy, and we may see tidal material connecting Sumo Puff with this galaxy. We offer two possible interpretations for the nature of this object: (1) it is an extreme, galaxy-size tidal feature associated with a recent merger event, or (2) it is a foreground dwarf galaxy with properties consistent with a quenched, disturbed ultra-diffuse galaxy. We present a qualitative comparison with simulations that demonstrates the feasibility of forming a structure similar to this object in a merger event. Follow-up spectroscopy and/or deeper imaging to confirm the presence of the bridge of tidal material will be necessary to reveal the true nature of this object.Comment: 10 pages, 5 figures, submitted to PASJ for the HSC-SSP special issu

    Single nucleotide polymorphisms in surfactant protein A1 are not associated with a lack of responsiveness to antenatal steroid therapy in a pregnant sheep model

    Get PDF
    Treatment with antenatal steroids (ANS) is standard practice for reducing the risk of respiratory distress in the preterm infant. Despite clear overall benefits when appropriately administered, many fetuses fail to derive benefit from ANS therapies. In standardized experiments using a pregnant sheep model, we have demonstrated that around 40% of ANS-exposed lambs did not have functional lung maturation significantly different from that of saline-treated controls. Surfactant protein A is known to play an important role in lung function. In this genotyping study, we investigated the potential correlation between polymorphisms in SFTPA1, messenger RNA and protein levels, and ventilation outcomes in animals treated with ANS. 45 preterm lambs were delivered 48 h after initial ANS therapy and 44 lambs were delivered 8 days after initial ANS therapy. The lambs were ventilated for 30 min after delivery. SFTPA1 mRNA expression in lung tissue was not correlated with arterial blood PaCO2 values at 30 min of ventilation in lambs delivered 48 h after treatment. SFTPA1 protein in lung tissue was significantly correlated with PaCO2 at 30 min of ventilation in lambs ventilated both 48 h and 8 days after ANS treatment. Six different single nucleotide polymorphisms (SNPs) in the Ovis aries SFTPA1 sequence were detected by Sanger Sequencing. No individual SNPs or SNP haplotypes correlated with alterations in PaCO2 at 30 min of ventilation or SFTPA1 protein levels in the lung. For the subset of animals analyzed in the present study, variable lung maturation responses to ANS therapy were not associated with mutations in SFTPA1
    corecore