776 research outputs found

    Equivalence of a one-dimensional driven-diffusive system and an equilibrium two-dimensional walk model

    Full text link
    It is known that a single product shock measure in some of one-dimensional driven-diffusive systems with nearest-neighbor interactions might evolve in time quite similar to a random walker moving on a one-dimensional lattice with reflecting boundaries. The non-equilibrium steady-state of the system in this case can be written in terms of a linear superposition of such uncorrelated shocks. Equivalently, one can write the steady-state of this system using a matrix-product approach with two-dimensional matrices. In this paper we introduce an equilibrium two-dimensional one-transit walk model and find its partition function using a transfer matrix method. We will show that there is a direct connection between the partition functions of these two systems. We will explicitly show that in the steady-state the transfer matrix of the one-transit walk model is related to the matrix representation of the algebra of the driven-diffusive model through a similarity transformation. The physical quantities are also related through the same transformation.Comment: 5 pages, 2 figures, Revte

    Adaptive active control of free space acoustic noise

    Full text link

    An Empirical Relation Between The Large-Scale Magnetic Field And The Dynamical Mass In Galaxies

    Full text link
    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields which govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, S(PI), and the rotation speed, v(rot), of galaxies. This leads to an almost linear correlation between the large-scale magnetic field B and v(rot), assuming that the number of cosmic ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear alpha-Omega dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, B ~ M^(0.25-0.4). Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed B-v(rot) correlation shows that the anisotropic turbulent magnetic field dominates B in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports an stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.Comment: 23 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    Finite-dimensional representation of the quadratic algebra of a generalized coagulation-decoagulation model

    Full text link
    The steady-state of a generalized coagulation-decoagulation model on a one-dimensional lattice with reflecting boundaries is studied using a matrix-product approach. It is shown that the quadratic algebra of the model has a four-dimensional representation provided that some constraints on the microscopic reaction rates are fulfilled. The dynamics of a product shock measure with two shock fronts, generated by the Hamiltonian of this model, is also studied. It turns out that the shock fronts move on the lattice as two simple random walkers which repel each other provided that the same constraints on the microscopic reaction rates are satisfied.Comment: Minor revision

    Occurrence and antimicrobial resistance of emergent Arcobacter spp. isolated from cattle and sheep in Iran

    Get PDF
    This study is conducted to determine the occurrence and antimicrobial resistance of Arcobacter spp. isolated from clinically healthy food animals. A total of 308 samples from cattle (200) and sheep (108) were collected from Shiraz slaughterhouse, southern Iran to investigate the presence of the important Arcobacter spp. using cultivation and Polymerase Chain Reaction (PCR) methods. Antimicrobial susceptibility of Arcobacter isolates was determined for 18 antibiotics using disk diffusion method. Among 308 samples, 27 (8.7) and 44 (14.28) were positive for the presence of Arcobacter species with cultivation and PCR procedures, respectively. The predominant species was A. butzleri in both cattle (58.33) and sheep (55). In addition, concurrent incidence of the species was observed in 25 of the positive samples. All Arcobacter isolates were resistant to rifampicin, vancomycin, ceftriaxone, trimethoprim and cephalothin. The isolates showed high susceptibility to tetracycline, oxytetracycline, erythromycin, ciprofloxacin, kanamycin, amikacin, gentamicin and enrofloxacin. No significant difference among cattle and sheep isolates in resistance pattern was observed. The results indicate that cattle and sheep are significant intestinal carriers for Arcobacter spp. Moreover, tetracycline and aminoglycosides showed great effects on Arcobacter species in antibiogram test and can be used for treatment of human Arcobacter infections. © 2015 Elsevier Ltd

    Morphological adaptation of Cercis griffithii seedlings in response to progressive drought and salinity stresses

    Get PDF
    The experiment for evaluate the effect of drought and salinity stresses on the morphological behaviours of Afghan redbud seedlings was done in Torogh nursery in Iran country. This study was conducted in a completely randomized design; without stress (tap common water in the nursery- EC 0.8 dS m-1), drought stress (four days a time irrigation) and salt treatment (EC 12.03 dS m-1). During the summer, morphological traits were measured and calculated. Result showed that height seedling after 60th until 70th day significant at the (p<0.05) level and significantly at (p<0.01) levels at the end of growth period under the drought and salinity conditions. Leaf area at the end of growth, leaf area growth and leaf area reduced significantly at (p<0.01) in comparison with control treatment. The result indicated that effect of time × drought interaction for height, diameter, number of leaves and leaf area was not significant. The result indicated that effect of time × salinity interaction for height, diameter and number of leaves was not significant but for leaf area had significant difference at (p<0.05) level. We used four days a time by irrigation and saline water in nursery less than EC 12.03 dS m-1 for economy well water in arid and semi-arid region.Keywords: Afghan redbud, Stress, Growth, Regression model, Repeated Measure

    Optimal Placement of Capacitors for Get the Best Total Generation Cost by Genetic Algorithm

    Get PDF
    Economic Dispatch(ED) is one of the most challenging problems of power system since it is difficult to determine the optimum generation scheduling to meet the particular load demand with the minimum fuel costs while all constraints are satisfied. The objective of the Economic Dispatch Problems (EDPs) of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. In this paper, an efficient and practical steady-state genetic algorithm (SSGAs) has been proposed for solving the economic dispatch problem. The objective is to minimize the total generation fuel cost and keep the power flows within the security limits. To achieve that, the present work is developed to determine the optimal location and size of capacitors in transmission power system where, the Participation Factor Algorithm and the Steady State Genetic Algorithm are proposed to select the best locations for the capacitors and determine the optimal size for them

    Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: Malign bodyguard?

    Get PDF
    On January 30, 2020, the World Health Organization identified SARS-CoV-2 as a public health emergency of global concern. Accordingly, the demand for personal protective equipment (PPE), including medical face masks, has sharply risen compared with 2019. The new situation has led to a sharp increase in energy demand and the environmental impacts associated with these product systems. Hence, the pandemic's effects on the environmental consequences of various PPE types, such as medical face masks, should be assessed. In light of that, the current study aimed to identify the environmental hot-spots of medical face mask production and consumption by using life cycle assessment (LCA) and tried to provide solutions to mitigate the adverse impacts. Based on the results obtained, in 2020, medical face masks production using fossil-based plastics causes the loss of 2.03 × 103 disability-adjusted life years (DALYs); 1.63 × 108 PDF*m2*yr damage to ecosystem quality; the climate-damaging release of 2.13 × 109 kg CO2eq; and 5.65 × 1010 MJ damage to resources. Besides, annual medical face mask production results in 5.88 × 104 TJ demand for exergy. On the other hand, if used makes are not appropriately handled, they can lead to 4.99 × 105 Pt/yr additional damage to the environment in 2020 as determined by the EDIP 2003. Replacement of fossil-based plastics with bio-based plastics, at rates ranging from 10 to 100%, could mitigate the product's total yearly environmental damage by 4–43%, respectively. Our study calls attention to the environmental sustainability of PPE used to prevent virus transmission in the current and future pandemics

    Optimal Placement of Capacitors for Get the Best Total Generation Cost by Genetic Algorithm

    Get PDF
    Economic Dispatch(ED) is one of the most challenging problems of power system since it is difficult to determine the optimum generation scheduling to meet the particular load demand with the minimum fuel costs while all constraints are satisfied. The objective of the Economic Dispatch Problems (EDPs) of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. In this paper, an efficient and practical steady-state genetic algorithm (SSGAs) has been proposed for solving the economic dispatch problem. The objective is to minimize the total generation fuel cost and keep the power flows within the security limits. To achieve that, the present work is developed to determine the optimal location and size of capacitors in transmission power system where, the Participation Factor Algorithm and the Steady State Genetic Algorithm are proposed to select the best locations for the capacitors and determine the optimal size for them
    • …
    corecore