436 research outputs found

    Supermatrix models and multi ZZ-brane partition functions in minimal superstring theories

    Get PDF
    We study (p,q)=(2,4k) minimal superstrings within the minimal superstring field theory constructed in hep-th/0611045. We explicitly give a solution to the W_{1+\infty} constraints by using charged D-instanton operators, and show that the (m,n)-instanton sector with m positive-charged and n negative-charged ZZ-branes is described by an (m+n)\times (m+n) supermatrix model. We argue that the supermatrix model can be regarded as an open string field theory on the multi ZZ-brane system.Comment: 15 pages, 1 figure, minor chang

    Induced sensorimotor brain plasticity controls pain in phantom limb patients

    Get PDF
    The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain-machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback.This research was conducted under the ‘Development of BMI Technologies for Clinical Application’ of SRPBS by MEXT and AMED. This research was also supported in part by JST PRESTO; JSPS KAKENHI JP24700419, JP26560467, JP22700435, JP26242088, JP26282165, JP15H05710 and JP15H05920; Brain/MINDS and SICP from AMED; ImPACT; Ministry of Health, Labor, and Welfare (18261201); and the Japan Foundation of Aging and Health

    Highly Efficient Spin-Current Operation in a Cu Nano-Ring

    Get PDF
    An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced AmpĂšre field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic

    Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid

    Get PDF
    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 ÎŒm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena

    Advances in bimodal AFM imaging of molecules in Liquid

    Get PDF
    Conferencia invitada presentada en la 14th International Conference on Noncontact AFM, celebrada en Lindau (Alemania).Improving spatial resolution, data acquisition times and material properties imaging are some long established goals in atomic force microscopy (AFM). Currently, the most promising approaches to reach those goals involve the excitation and detection of several frequencies of the tip’s oscillation. Usually those frequencies are associated with either the higher harmonics of the oscillation or the eigenmodes of the cantilever. Bimodal AFM is an emerging multifrequency technique that is characterized by a high signal-to-noise ratio and the versatility to measure simultaneously different forces. The method is also compatible with molecular resolution imaging under the application of sub-50 pN peak forces.Peer Reviewe

    Topological Landau-Ginzburg theory with a rational potential and the dispersionless KP hierarchy

    Get PDF
    Based on the dispersionless KP (dKP) theory, we give a comprehensive study of the topological Landau-Ginzburg (LG) theory characterized by a rational potential. Writing the dKP hierarchy in a general form, we find that the hierarchy naturally includes the dispersionless (continuous) limit of Toda hierarchy and its generalizations having finite number of primaries. Several flat solutions of the topological LG theory are obtained in this formulation, and are identified with those discussed by Dubrovin. We explicitly construct gravitational descendants for all the primary fields. Giving a residue formula for the 3-point functions of the fields, we show that these 3-point functions satisfy the topological recursion relation. The string equation is obtained as the generalized hodograph solutions of the dKP hierarchy, which show that all the gravitational effects to the constitutive equations (2-point functions) can be renormalized into the coupling constants in the small phase space.Comment: 54 pages, Plain TeX. Figure could be obtained from Kodam
    • 

    corecore