1,209 research outputs found

    Dynamic treatment of vibrational energy relaxation in a heterogeneous and fluctuating environment

    Full text link
    A computational approach to describe the energy relaxation of a high-frequency vibrational mode in a fluctuating heterogeneous environment is outlined. Extending previous work [H. Fujisaki, Y. Zhang, and J.E. Straub, J. Chem. Phys. {\bf 124}, 144910 (2006)], second-order time-dependent perturbation theory is employed which includes the fluctuations of the parameters in the Hamiltonian within the vibrational adiabatic approximation. This means that the time-dependent vibrational frequencies along an MD trajectory are obtained via a partial geometry optimization of the solute with fixed solvent and a subsequent normal mode calculation. Adopting the amide I mode of N-methylacetamide in heavy water as a test problem, it is shown that the inclusion of dynamic fluctuations may significantly change the vibrational energy relaxation. In particular, it is found that relaxation occurs in two phases, because for short times (\lesssim 200 fs) the spectral density appears continuous due to the frequency-time uncertainty relation, while at longer times the discrete nature of the bath becomes apparent. Considering the excellent agreement between theory and experiment, it is speculated if this behavior can explain the experimentally obtained biphasic relaxation the amide I mode of N-methylacetamide.Comment: 24 pages, 7 figures, submitted to J. Chem. Phy

    Rational design of metal nitride redox materials for solar-driven ammonia synthesis

    Get PDF
    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water, and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared to no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia

    Anti-microbial Use in Animals: How to Assess the Trade-offs

    Get PDF
    Antimicrobials are widely used in preventive and curative medicine in animals. Benefits from curative use are clear – it allows sick animals to be healthy with a gain in human welfare. The case for preventive use of antimicrobials is less clear cut with debates on the value of antimicrobials as growth promoters in the intensive livestock industries. The possible benefits from the use of antimicrobials need to be balanced against their cost and the increased risk of emergence of resistance due to their use in animals. The study examines the importance of animals in society and how the role and management of animals is changing including the use of antimicrobials. It proposes an economic framework to assess the trade-offs of anti-microbial use and examines the current level of data collection and analysis of these trade-offs. An exploratory review identifies a number of weaknesses. Rarely are we consistent in the frameworks applied to the economic assessment anti-microbial use in animals, which may well be due to gaps in data or the prejudices of the analysts. There is a need for more careful data collection that would allow information on (i) which species and production systems antimicrobials are used in, (ii) what active substance of antimicrobials and the application method and (iii) what dosage rates. The species need to include companion animals as well as the farmed animals as it is still not known how important direct versus indirect spread of resistance to humans is. In addition, research is needed on pricing antimicrobials used in animals to ensure that prices reflect production and marketing costs, the fixed costs of anti-microbial development and the externalities of resistance emergence. Overall, much work is needed to provide greater guidance to policy, and such work should be informed by rigorous data collection and analysis systems

    Livestock to 2020: The next food revolution

    Get PDF
    A team of researchers from the International Food Policy Research Institute (IFPRI), the Food and Agricultural Organization of the United Nations (FAO), and the International Livestock Research Institute (ILRI) collaborated to produce this comprehensive and even-handed attempt at defining the nature, extent scope, and implications of what they term the "Livestock Revolution" in developing countries. Looking forward to 2020, they argue convincingly that the structural shifts in world agriculture being brought about by shifts in developing country demand for foods of animal origin will continue and that increasingly global markets have the ability to supply both cereal and animal products in desired quantities without undue price rises. Topics of discussion include livestock revolution, recent transformation of livestock food demand; accompanying transformation of livestock supply; projections of future demand and supply to 2020; implications of the livestock revolution for world trade and food prices; nutrition, food security, and poverty alleviation; environmental sustainability; public health, technology needs and prospects; and taking stock and moving forward

    A Survey of Ramp and Stair Use among Older Adults

    Get PDF
    Forty-three community-dwelling adults aged 57 to 95 participated in survey exploring characteristics of ramp use by older ambulant people. Twenty-three respondents said they ascended ramps instead of stairs most of the time, and 14 said they ascended ramps some of the time. Similar numbers were reported for descent. Overall, respondents felt less fatigued, less likely to trip, and more comfortable when using ramps rather than stairs for ascending one level. When descending one level, balance, tripping, and comfort were the strongest determinants of ramp use. Respondents indicated that descent was more problematic, particularly in regard to balance and tripping. The presence of handrails often determined the choice of route. Results from this survey provided the basis for an experiment evaluating the abilities of older people to traverse ramps of various slopes. The ADA Accessibility Guidelines implicitly assume that a ramp accommodates everyone. This study indicates that entrances should have both ramps and stairs.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Seasonality constraints to livestock grazing intensity

    Get PDF
    Increasing food production is essential to meet the future food demand of a growing world population. In the light of pressing sustainability challenges like climate change and the importance of the global livestock system for food security as well as GHG emissions, finding ways to increasing food production sustainably and without increasing competition for food crops is essential. Yet, many unknowns relate to livestock grazing, in particular grazing intensity, an essential variable to assess the sustainability of livestock systems. Here we explore ecological limits to grazing intensity (GI; i.e., the fraction of Net Primary Production consumed by grazing animals) by analysing the role of seasonality in natural grasslands. We estimate seasonal limitations to GI by combining monthly Net Primary Production data and a map of global livestock distribution with assumptions on the length of non-favourable periods that can be bridged by livestock (e.g., by browsing dead standing biomass, storage systems or biomass conservation). This allows us to derive a seasonality-limited potential GI, which we compare with the GI prevailing in 2000. We find that GI in 2000 lies below its potential on 39% of the total global natural grasslands, which has a potential for increasing biomass extraction of up to 181 MtC/yr. In contrast, on 61% of the area GI exceeds the potential, made possible by management. Mobilizing this potential could increase milk production by 5%, meat production by 4%, or contribute to free up to 2.8 Mio km² of grassland area at the global scale if the numerous socio-ecological constraints can be overcome. We discuss socio-ecological trade-offs, which may reduce the estimated potential considerably and require the establishment of sound monitoring systems and an improved understanding of livestock system’s role in the Earth system
    corecore