131 research outputs found

    Catfish reappeared in Dakshina Kannada Coast

    Get PDF
    After a gap of several years catfish reappeared in Malpe during September, 1994. Three purse seiners together landed three tonnes of catfish Tachysurus serratus (90 per cent) and T. dussumieri (10 per cent

    Impact of Land Use Land Cover Change on Coastal Tourism in Kundapura, Karnataka, Using Multi-temporal Remotely Sensed Data and GIS Techniques

    Get PDF
    The present study is an attempt to examine the Land Use Land Cover changes in parts of Kundapura Taluk in Karnataka for the period 2006 and 2016 and its impact on coastal tourism. IRS satellite images of 2006 and 2016 have been used and processed using ERDAS Imagine and ArcGIS. The result indicated tremendous changes, particularly in mixed urban and agricultural land and proved that RS/GIS has advantages over conventional techniques. The result obtained, based on the multi-dated satellite data study, will assist in decision making and help to take appropriate measures to monitor and regulate coastal development in order to achieve sustainable and integrated coastal development

    Unusual landing of catfish by purse seine at Malpe, Dakshina Kannada

    Get PDF
    For the last several years, cat fish did not form a fishery at Malpe in Dakshina Kannada in Karnataka. On 30-09-94, three purse seines landed about 3 tonnes of catfish. All the three units operated at a depth of 36 metres off Malpe. The catfish catch was comprised of Tachysurus serratus (90%) and T. dussumieri[10%)

    Nanotubes from the Misfit Layered Compound (SmS)1.19TaS2: Atomic Structure, Charge Transfer, and Electrical Properties

    Full text link
    Misfit layered compounds (MLCs) MX-TX2, where M, T = metal atoms and X = S, Se, or Te, and their nanotubes are of significant interest due to their rich chemistry and unique quasi-1D structure. In particular, LnX-TX2 (Ln = rare-earth atom) constitute a relatively large family of MLCs, from which nanotubes have been synthesized. The properties of MLCs can be tuned by the chemical and structural interplay between LnX and TX2 sublayers and alloying of each of the Ln, T, and X elements. In order to engineer them to gain desirable performance, a detailed understanding of their complex structure is indispensable. MLC nanotubes are a relative newcomer and offer new opportunities. In particular, like WS2 nanotubes before, the confinement of the free carriers in these quasi-1D nanostructures and their chiral nature offer intriguing physical behavior. High-resolution transmission electron microscopy in conjunction with a focused ion beam are engaged to study SmS-TaS2 nanotubes and their cross-sections at the atomic scale. The atomic resolution images distinctly reveal that Ta is in trigonal prismatic coordination with S atoms in a hexagonal structure. Furthermore, the position of the sulfur atoms in both the SmS and the TaS2 sublattices is revealed. X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and X-ray absorption spectroscopy are carried out. These analyses conclude that charge transfer from the Sm to the Ta atoms leads to filling of the Ta 5dz2 level, which is confirmed by density functional theory (DFT) calculations. Transport measurements show that the nanotubes are semimetallic with resistivities in the range of 10-4 Ω·cm at room temperature, and magnetic susceptibility measurements show a superconducting transition at 4 K. © 2022 The Authors. Published by American Chemical Society.This work was partially supported by the Israel Science Foundation Grant No. 339/18 (Internal Grant No. 120924) (R.T.). The following foundations are acknowledged: Perlman Family Foundation; the Kimmel Center for Nanoscale Science Grant No. 43535000350000; and the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging. CzechNanoLab Project LM2018110 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements and sample fabrication at the CEITEC Nano Research Infrastructure. This work was partially supported by Ceitec Nano+ (CZ.02.01/0.0./.0.0./16_013/0001728 under Program OPVVV) and the Horizon 2020 Research and Innovation Programme under Grant Agreement 810626 (SINNCE). Work at Ames Laboratory was supported by the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, Office of Science of U.S. Department of Energy. Ames Laboratory is operated for the U.S. DOE by Iowa State University of Science and Technology under Contract No. DE-AC02-07CH11358. A part of the work at Buffalo State was supported by the faculty startup fund from the Dean’s Office, School of Arts and Sciences, State University of New York (SUNY), Buffalo State. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities for XAS studies. Parts of this research were carried out at PETRA III, P23 “In-situ and X-ray imaging beamline”

    Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond

    Get PDF
    2D transition metal dichalcogenides (TMDCs) are among the most exciting materials of today. Their layered crystal structures result in unique and useful electronic, optical, catalytic, and quantum properties. To realize the technological potential of TMDCs, methods depositing uniform films of controlled thickness at low temperatures in a highly controllable, scalable, and repeatable manner are needed. Atomic layer deposition (ALD) is a chemical gas-phase thin film deposition method capable of meeting these challenges. In this review, the applications evaluated for ALD TMDCs are systematically examined, including electronics and optoelectonics, electrocatalysis and photocatalysis, energy storage, lubrication, plasmonics, solar cells, and photonics. This review focuses on understanding the interplay between ALD precursors and deposition conditions, the resulting film characteristics such as thickness, crystallinity, and morphology, and ultimately device performance. Through rational choice of precursors and conditions, ALD is observed to exhibit potential to meet the varying requirements of widely different applications. Beyond the current state of ALD TMDCs, the future prospects, opportunities, and challenges in different applications are discussed. The authors hope that the review aids in bringing together experts in the fields of ALD, TMDCs, and various applications to eventually realize industrial applications of ALD TMDCs.Peer reviewe
    corecore