64 research outputs found

    In vitro multistage malaria transmission blocking activity of selected malaria box compounds

    Get PDF
    Purpose: Continuous efforts into the discovery and development of new antimalarials are required to face the emerging resistance of the parasite to available treatments. Thus, new effective drugs, ideally able to inhibit the Plasmodium life-cycle stages that cause the disease as well as those responsible for its transmission, are needed. Eight compounds from the Medicines for Malaria Venture (MMV) Malaria Box, potentially interfering with the parasite polyamine biosynthesis were selected and assessed in vitro for activity against malaria transmissible stages, namely mature gametocytes and early sporogonic stages. Methods: Compound activity against asexual blood stages of chloroquine-sensitive 3D7 and chloroquine-resistant W2 strains of Plasmodium falciparum was tested measuring the parasite lactate dehydrogenase activity. The gametocytocidal effect was determined against the P. falciparum 3D7elo1-pfs16-CBG99 strain with a luminescent method. The murine P. berghei CTRP.GFP strain was employed to assess compounds activities against early sporogonic stage development in an in vitro assay simulating mosquito midgut conditions. Results: Among the eight tested molecules, MMV000642, MMV000662 and MMV006429, containing a 1,2,3,4-tetrahydroisoquinoline-4-carboxamide chemical skeleton substituted at N-2, C-3 and C-4, displayed multi-stage activity. Activity against asexual blood stages of both strains was confirmed with values of IC50 (50% inhibitory concentration) in the range of 0.07\u20130.13 \ub5M. They were also active against mature stage V gametocytes with IC50 values below 5 \ub5M (range: 3.43\u20134.42 \ub5M). These molecules exhibited moderate effects on early sporogonic stage development, displaying IC50 values between 20 and 40 \ub5M. Conclusion: Given the multi-stage, transmission-blocking profiles of MMV000642, MMV000662, MMV006429, and their chemical characteristics, these compounds can be considered worthy for further optimisation toward a TCP5 or TCP6 target product profile proposed by MMV for transmission-blocking antimalarials

    HIV-1 Nef increases astrocyte sensitivity towards exogenous hydrogen peroxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 infected individuals are under chronic exposure to reactive oxygen species (ROS) considered to be instrumental in the progression of AIDS and the development of HIV-1 associated dementia (HAD). Astrocytes support neuronal function and protect them against cytotoxic substances including ROS. The protein HIV-1 Nef, a progression factor in AIDS pathology is abundantly expressed in astrocytes in patients with HAD, and thus may influence its functions.</p> <p>Results</p> <p>Endogenous expressed HIV-1 Nef leads to increased sensitivity of human astrocytes towards exogenous hydrogen peroxide but not towards TNF-alpha. Cell death of <it>nef</it>-expressing astrocytes exposed to 10 μM hydrogen peroxide for 30 min occurred within 4 h.</p> <p>Conclusion</p> <p>HIV-1 Nef may contribute to neuronal dysfunction and the development of HAD by causing death of astrocytes through decreasing their tolerance for hydrogen peroxide.</p

    Mitochondrial Lactate Dehydrogenase Is Involved in Oxidative-Energy Metabolism in Human Astrocytoma Cells (CCF-STTG1)

    Get PDF
    Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. 13C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget

    Examiner calibration in caries detection for populations and settings where in vivo calibration is not practical

    No full text
    To study examiner calibration methods for populations and settings where clinical (in vivo) calibration is not practical. Methods: Study design was cross-sectional and fully-crossed. The units of analysis were 880 tooth surfaces, from ten children ages 3 to 4 years. The study had three data components: (1) Examiner training and calibration using the International Caries Detection and Assessment System (ICDAS) e-Learning programme (2) In vivo community-based visual examination and (3) Intra-oral digital photographs of the same tooth surfaces from the in vivo visual examination. Kappa and weighted kappa scores were used to study reliability estimates. Systematic differences in caries assessments were determined using the Stuart Maxwell test. Data were analysed using STATA 13.1 and SAS 9.2. Results: Weighted kappa scores for the in vivo component ranged from 0.50 to 0.66 and from 0.64-0.74, for inter- and intra-examiner reliability, respectively. Caries lesions detected in vivo were also detected on photographs, albeit with increased severity when using photographs. For example, of 46 tooth surfaces assessed as being sound in the in vivo examination, 22 (48%) of these were assessed as having caries when photographs were used as the diagnostic method. Conclusions: From this research it appears that good quality photographs alone may be used for training and calibration among challenging populations or settings without adversely affecting data quality

    Neuroprotective effects of lactate and ketone bodies in acute brain injury.

    No full text
    The goal of neurocritical care is to prevent and reverse the pathologic cascades of secondary brain injury by optimizing cerebral blood flow, oxygen supply and substrate delivery. While glucose is an essential energetic substrate for the brain, we frequently observe a strong decrease in glucose delivery and/or a glucose metabolic dysregulation following acute brain injury. In parallel, during the last decades, lactate and ketone bodies have been identified as potential alternative fuels to provide energy to the brain, both under physiological conditions and in case of glucose shortage. They are now viewed as integral parts of brain metabolism. In addition to their energetic role, experimental evidence also supports their neuroprotective properties after acute brain injury, regulating in particular intracranial pressure control, decreasing ischemic volume, and leading to an improvement in cognitive functions as well as survival. In this review, we present preclinical and clinical evidence exploring the mechanisms underlying their neuroprotective effects and identify research priorities for promoting lactate and ketone bodies use in brain injury

    Maternal consumption of piceatannol: A nutritional neuroprotective strategy against hypoxia-ischemia in rat neonates.

    No full text
    Hypoxia-ischemia (HI) remains a major cause of perinatal mortality and chronic disability in newborns worldwide (1-6 for 1000 births) with a high risk of future motor, behavioral and neurological deficits. Keeping newborns under moderate hypothermia is the unique therapeutic approach but is not sufficiently successful as nearly 50% of infants do not respond to it. In a 7-day post-natal rat model of HI, we used pregnant and breastfeeding female nutritional supplementation with piceatannol (PIC), a polyphenol naturally found in berries, grapes and passion fruit, as a neuroprotective strategy. Maternal supplementation led to neuroprotection against neonate brain damage and reversed their sensorimotor deficits as well as cognitive impairments. Neuroprotection of per os maternal supplementation with PIC is a preventive strategy to counteract brain damage in pups induced by HI. This nutritional approach could easily be adopted as a preventive strategy in humans

    Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance.

    Get PDF
    Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex. Results show that the lactate rise in the barrel cortex upon whisker stimulation is abolished when either transporter is down-regulated. Under the same paradigm, the BOLD response is prevented in all MCT2 down-regulated rats, while about half of the MCT4 down-regulated rats exhibited a loss of the BOLD response. Interestingly, MCT4 down-regulated animals showing no BOLD response were rescued by peripheral lactate infusion, while this treatment had no effect on MCT2 down-regulated rats. When animals were tested in a novel object recognition task, MCT2 down-regulated animals were impaired in the textured but not in the visual version of the task. For MCT4 down-regulated animals, while all animal succeeded in the visual task, half of them exhibited a deficit in the textured task, a similar segregation into two groups as observed for BOLD experiments. Our data demonstrate that lactate shuttling between astrocytes and neurons is essential to give rise to both neurometabolic and neurovascular couplings, which form the basis for the detection of brain activation by functional brain imaging techniques. Moreover, our results establish that this metabolic cooperation is required to sustain behavioral performance based on cortical activation
    corecore