1,608 research outputs found

    Phase calibration generator

    Get PDF
    A phase calibration system was developed for the Deep Space Stations to generate reference microwave comb tones which are mixed in with signals received by the antenna. These reference tones are used to remove drifts of the station's receiving system from the detected data. This phase calibration system includes a cable stabilizer which transfers a 20 MHz reference signal from the control room to the antenna cone. The cable stabilizer compensates for delay changes in the long cable which connects its control room subassembly to its antenna cone subassembly in such a way that the 20 MHz is transferred to the cone with no significant degradation of the hydrogen maser atomic clock stability. The 20 MHz reference is used by the comb generator and is also available for use as a reference for receiver LO's in the cone

    Test/score/report: Simulation techniques for automating the test process

    Get PDF
    A Test/Score/Report capability is currently being developed for the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) system which will automate testing of the Goddard Space Flight Center (GSFC) Payload Operations Control Center (POCC) and Mission Operations Center (MOC) software in three areas: telemetry decommutation, spacecraft command processing, and spacecraft memory load and dump processing. Automated computer control of the acceptance test process is one of the primary goals of a test team. With the proper simulation tools and user interface, the task of acceptance testing, regression testing, and repeatability of specific test procedures of a ground data system can be a simpler task. Ideally, the goal for complete automation would be to plug the operational deliverable into the simulator, press the start button, execute the test procedure, accumulate and analyze the data, score the results, and report the results to the test team along with a go/no recommendation to the test team. In practice, this may not be possible because of inadequate test tools, pressures of schedules, limited resources, etc. Most tests are accomplished using a certain degree of automation and test procedures that are labor intensive. This paper discusses some simulation techniques that can improve the automation of the test process. The TASS system tests the POCC/MOC software and provides a score based on the test results. The TASS system displays statistics on the success of the POCC/MOC system processing in each of the three areas as well as event messages pertaining to the Test/Score/Report processing. The TASS system also provides formatted reports documenting each step performed during the tests and the results of each step. A prototype of the Test/Score/Report capability is available and currently being used to test some POCC/MOC software deliveries. When this capability is fully operational it should greatly reduce the time necessary to test a POCC/MOC software delivery, as well as improve the quality of the test process

    Civil Service Management Practices for a More Motivated, Committed and Ethical Public Service in Ghana

    Get PDF

    Nitrogen and oxygen isotope constraints on the origin of atmospheric nitrate in coastal Antarctica

    Get PDF
    Throughout the year 2001, aerosol samples were collected continuously for 10 to 15 days at the French Antarctic Station Dumont d&apos;Urville (DDU) (66&deg;40&apos; S, l40&deg;0&apos; E, 40 m above mean sea level). The nitrogen and oxygen isotopic ratios of particulate nitrate at DDU exhibit seasonal variations that are among the most extreme observed for nitrate on Earth. In association with concentration measurements, the isotope ratios delineate four distinct periods, broadly consistent with previous studies on Antarctic coastal areas. During austral autumn and early winter (March to mid-July), nitrate concentrations attain a minimum between 10 and 30 ng m<sup>&minus;3</sup> (referred to as Period 2). Two local maxima in August (55 ng m<sup>&minus;3</sup>) and November/December (165 ng m<sup>&minus;3</sup>) are used to assign Period 3 (mid-July to September) and Period 4 (October to December). Period 1 (January to March) is a transition period between the maximum concentration of Period 4 and the background concentration of Period 2. These seasonal changes are reflected in changes of the nitrogen and oxygen isotope ratios. During Period 2, which is characterized by background concentrations, the isotope ratios are in the range of previous measurements at mid-latitudes: &delta;<sup>18</sup>O<sub>vsmow</sub>=(77.2&plusmn;8.6)&permil;; &Delta;<sup>17</sup>O=(29.8&plusmn;4.4)&permil;; &delta;<sup>15</sup>N<sub>air</sub>=(&minus;4.4&plusmn;5.4)&permil; (mean &plusmn; one standard deviation). Period 3 is accompanied by a significant increase of the oxygen isotope ratios and a small increase of the nitrogen isotope ratio to &delta;<sup>18</sup>O<sub>vsmow</sub>=(98.8&plusmn;13.9)&permil;; &Delta;<sup>17</sup>O=(38.8&plusmn;4.7)&permil; and &delta;<sup>15</sup>N<sub>air</sub>=(4.3&plusmn;8.20&permil;). Period 4 is characterized by a minimum <sup>15</sup>N/<sup>14</sup>N ratio, only matched by one prior study of Antarctic aerosols, and oxygen isotope ratios similar to Period 2: &delta;<sup>18</sup>O<sub>vsmow</sub>=(77.2&plusmn;7.7)&permil;; &Delta;<sup>17</sup>O=(31.1&plusmn;3.2)&permil;; &delta;<sup>15</sup>N<sub>air</sub>=(&minus;32.7&plusmn;8.4)&permil;. Finally, during Period 1, isotope ratios reach minimum values for oxygen and intermediate values for nitrogen: &delta;<sup>18</sup>O<sub>vsmow</sub>=63.2&plusmn;2.5&permil;; &Delta;<sup>17</sup>O=24.0&plusmn;1.1&permil;; &delta;<sup>15</sup>N<sub>air</sub>=&minus;17.9&plusmn;4.0&permil;). Based on the measured isotopic composition, known atmospheric transport patterns and the current understanding of kinetics and isotope effects of relevant atmospheric chemical processes, we suggest that elevated tropospheric nitrate levels during Period 3 are most likely the result of nitrate sedimentation from polar stratospheric clouds (PSCs), whereas elevated nitrate levels during Period 4 are likely to result from snow re-emission of nitrogen oxide species. We are unable to attribute the source of the nitrate during periods 1 and 2 to local production or long-range transport, but note that the oxygen isotopic composition is in agreement with day and night time nitrate chemistry driven by the diurnal solar cycle. A precise quantification is difficult, due to our insufficient knowledge of isotope fractionation during the reactions leading to nitrate formation, among other reasons

    Realization of an Asymmetric Non‐Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition

    Full text link
    This communication presents a mechanism‐based approach to identify organic electrolytes for non‐aqueous redox flow batteries (RFBs). Symmetrical flow cell cycling of a pyridinium anolyte and a cyclopropenium catholyte resulted in extensive capacity fade due to competing decomposition of the pyridinium species. Characterization of this decomposition pathway enabled the rational design of next‐generation anolyte/catholyte pairs with dramatically enhanced cycling performance. Three factors were identified as critical for slowing capacity fade: (1) separating the anolyte–catholyte in an asymmetric flow cell using an anion exchange membrane (AEM); (2) moving from monomeric to oligomeric electrolytes to limit crossover through the AEM; and (3) removing the basic carbonyl moiety from the anolyte to slow the protonation‐induced decomposition pathway. Ultimately, these modifications led to a novel anolyte–catholyte pair that can be cycled in an AEM‐separated asymmetric RFB for 96 h with >95 % capacity retention at an open circuit voltage of 1.57 V.Applied molecular design! This study presents a mechanism‐based approach to the molecular design of electrolytes for implementation in an asymmetric non‐aqueous redox flow battery.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154972/1/chem202000749-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154972/2/chem202000749.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154972/3/chem202000749_am.pd

    The Incidence of Pollution Control Policies

    Get PDF
    This paper reviews theoretical and empirical literature on the household distribution of the costs and benefits of pollution control policies, and ways of integrating distributional issues into environmental cost/benefit analysis. Most studies find that policy costs fall disproportionately on poorer groups, though this is less pronounced when lifetime income is used, and policies affect prices of inputs used pervasively across the economy. The policy instrument itself is also critical; freely allocated emission permits may hurt the poor the most, as they transfer income to shareholders via scarcity rents created by higher prices, while emissions taxes offer opportunities for progressive revenue recycling. And although low-income households appear to bear a disproportionate share of environmental risks, policies that reduce risks are not always progressive, for example, they may alter property values in ways that benefit the wealthy. The review concludes by noting a number of areas where future research is badly needed.

    Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean

    Get PDF
    Fixed nitrogen (N) is a limiting algal nutrient in the low latitude ocean, and the oceanic N inventory has been suggested to increase during ice ages so as to lower atmospheric CO_2. In organic matter within planktonic foraminifera shells in Caribbean Sea sediments, the ^(15)N/^(14)N from the last ice age is higher than that from the current interglacial, indicating higher nitrate ^(15)N/^(14)N in the Caribbean thermocline. This and species-specific differences are best explained by less N fixation in the Atlantic during the last ice age. The fixation decrease was most likely a response to a known ice age reduction in ocean N loss, and it would have worked to balance the ocean N budget and to curb ice age-to-interglacial change in the N inventory

    Uptake of groundwater nitrogen by a near-shore coral reef community on Bermuda

    Get PDF
    Nutrient enrichment can slow growth, enhance bioerosion rates, and intensify algal competition for reef-building corals. In areas of high human population density and/or limited waste management, submarine groundwater discharge can transfer anthropogenic nutrients from polluted groundwater to coastal reefs. In this case study, we investigate the impact of submarine groundwater discharge on a near-shore reef in Bermuda, where over 60% of sewage generated by the island’s 64,000 residents enters the groundwater through untreated cesspits. Temperature, salinity, pH, and alkalinity were monitored at a groundwater discharge vent, three locations across the adjacent coral reef (0–30 m from shore), and a comparison patch reef site 2 km from shore. Groundwater discharge was characterized by low salinity, low aragonite saturation state (Ω_(ar)), high alkalinity, elevated nitrate + nitrite (NO₃₋ + NO₂₋; hereafter, “NO₃₋”) concentrations (> 400 µM), and an elevated ¹⁵N/¹⁴N ratio of NO₃₋ (δ¹⁵N = 10.9 ± 0.02‰ vs. air, mean ± SD). Rainfall and tidal cycles strongly impacted groundwater discharge, with maximum discharge during low tide. NO₃₋ concentrations on the near-shore reef averaged 4 µM, ten times higher than that found at the control site 2 km away, and elevated NO₃₋ δ¹⁵N at the near-shore reef indicated sewage-contaminated groundwater as a significant nitrogen source. Tissue δ¹⁵N of Porites astreoides, a dominant reef-building coral, was elevated by ~ 3‰ on the near-shore reef compared to the control site, indicating that corals across the near-shore reef were assimilating groundwater-derived nitrogen. In addition, coral skeletal density and calcification rates across the near-shore reef were inversely correlated with NO₃₋ concentration and δ¹⁵N, indicating a negative coral health response to groundwater-borne nutrient inputs. P. astreoides bioerosion rates, in contrast, did not show an effect from the groundwater input
    corecore